ВВЕДЕНИЕ

Одной из важных характеристик, учитываемых при проектировании, разработке и эксплуатации машин и аппаратов, является их надежность. В течение длительного времени понятие надежности носило, по существу, интуитивный, субъективный и качественный характер. Необходимость в количественной оценке надежности впервые стала остро ощущаться в годы второй мировой войны. Интенсивное развитие военной, а затем и космической техники привело к созданию современной теории надежности, широко использующей количественные показатели. Такие показатели можно задавать, анализировать, измерять как конструктивный параметр. При этом конструктивный параметр устанавливается на основе выбора компромиссного соотношения с другими показателями, например со стоимостью или с какой-либо рабочей характеристикой.

Цель настоящего издания — помочь освоить студентам теоретический курс "Надежность технологического оборудования" и приобрести навыки инженерных расчетов. Учебное пособие к индивидуальным и практическим занятиям позволяет познакомиться со спецификой и с инженерными методиками расчета технологического оборудования на надежность.

В работе изложены те разделы надежности, которые могут быть полезны в подготовке инженеров-механиков. Основное внимание уделено проблеме определения количественных показателей надежности при проектировании и испытании изделий. Определяются основные термины и показатели, используемые при расчетах надежности. Представлены как количественные, так и качественные характеристики.

Внутри каждого раздела материал излагается в следующем порядке: конструктивные и расчетные схемы рассматриваемого оборудования; методики расчетов машин и аппаратов, а также их узлов на надежность; индивидуальные задания для расчетов по вариантам.

Основные показатели надежности

Любой анализ надежности системы должен основываться на точно определенных понятиях. Известно, что даже у одинаковых систем, работающих в аналогичных условиях, отказы происходят в случайные различные моменты времени, т.е. отказы могут быть описаны только в терминах теории вероятностей. Таким образом, основные определения надежности должны основываться главным образом на понятиях теории вероятностей.

Вероятность безотказной работы

Вероятность безотказной работы P(t) — это такая функция времени, которая определяет вероятность того, что невосстанавливаемая система будет выполнять требуемую функцию в заданный момент времени t. Ее можно записать в виде

$$P(t) = \frac{N_0 - n(t)}{N_0},$$

где N_0 — число единиц одинакового оборудования, работающего в одинаковых условиях; n(t) — число отказов в контрольной группе.

Вероятность отказа Q(t) — это вероятность того, что система выйдет из строя к моменту времени t. Она связана с вероятностью безотказной работы P(t) простым соотношением

$$Q(t)+P(t)=1.$$

Тогда вероятность отказа

$$Q(t)=1-P(t)$$
.

Таким образом, в простейшем случае, при определении вероятности отказа и вероятности безотказной работы к заданному моменту времени необходимо знать в качестве исходных данных число единиц оборудования в контрольной группе в начальный момент времени, а также количество вышедших из строя образцов.

Задача 1 На испытание поставлено N_0 однотипных центробежных насосов. За время t часов отказало n насосов. Определить вероятность отказа и вероятность безотказной работы.

Исходные данные для расчета представлены в табл. 1 приложения.

Частота отказов

Если случайная величина t (наработка до отказа) имеет плотность распределения f(t), то вероятность безотказной работы

$$P(t) = 1 - Q(t) = 1 - \int_{1}^{t} f(\tau)d\tau.$$

Другими словами, частота отказов или плотность вероятности отказов f(t) представляет собой отношение числа отказавших аппаратов n(t) к числу первоначально установленных N_0 за единицу времени Δt

$$f(t) = \frac{n(t)}{N_0 \Delta t}.$$

Интенсивность отказов

Вероятность отказа системы в данном промежутке времени [t1, t2] можно выразить через вероятность отказа

$$\int_{t_2}^{t_1} f(t)dt = \int_{-\infty}^{t_2} f(t)dt - \int_{-\infty}^{t_1} f(t)dt = Q(t_2) - Q(t_1)$$

Либо через вероятность безотказной работы

$$\int_{t_2}^{t_1} f(t)dt = \int_{t_1}^{\infty} f(t)dt - \int_{t_2}^{\infty} f(t)dt = P(t_2) - P(t_1).$$

Частота появления отказов в некотором промежутке времени [t1, t2] называется интенсивностью отказов $\lambda(t)$ в этом интервале.

Она определяется вероятностью того, что в этом интервале произойдет отказ за единицу времени при условии, что отказ не произошел до момента времени t_1 , с которого начинается этот интервал. Таким образом, интенсивность отказов $\lambda(t)$ имеет вид

$$\frac{P(t_1) - P(t_2)}{(t_2 - t_1)P(t_1)} = \frac{P(t) - P(t + \Delta t)}{\Delta t P(t)}$$

при условии, что $[t1, t2] = [t, t + \Delta t]$.

Принимая, что интенсивность отказов $\lambda(t)$ выражает качественные изменения, происходящие в оборудовании во время его эксплуатации, выражение для расчета $\lambda(t)$ в иной форме

$$\lambda(t) = \frac{n(\Delta t)}{N_{\rm cp}(t)\Delta t'}$$

где $n(\Delta t)$ — число отказов за время Δt ; $N_{\rm cp}$ (t) — среднее число действующих в этот период времени аппаратов.

Таким образом, методика расчета параметров надежности оборудования может быть построена следующим образом. Рассмотрим пример, когда контрольная группа какого-либо оборудования подвергается испытаниям на надежность. При этом количество отказов фиксируется к моменту времени t и по истечению промежутка времени Δt .

1. Схематически изобразим работу оборудования в течение заданного промежутка времени.

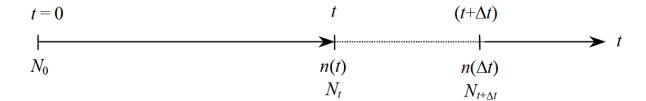


Рис. 1 Схема работы оборудования:

 N_0 —число единиц одинакового оборудования, работающего в одинаковых условиях; n(t) — число отказов в контрольной группе к моменту времени t; N_t — число единиц исправного оборудования к моменту времени t; $n(\Delta t)$ — число отказов в контрольной группе за промежуток времени Δt ; $N_{t+\Delta t}$ — число единиц исправного оборудования к моменту времени $(t + \Delta t)$.

2.Вероятность безотказной работы за время t

$$P(t) = \frac{N_0 - n(t)}{N_0}.$$

3. Вероятность безотказной работы за время $(t + \Delta t)$

$$P(t + \Delta t) = \frac{N_0 - n(t)}{N_0}.$$

4. Среднее количество изделий, действующих в период времени $(t + \Delta t)$

$$N_{-p}\left(t+\frac{1}{2}\Delta t\right)=N_0-\left(n(t)+\frac{1}{2}n(\Delta t)\right),$$

Где $n\left(t+\frac{1}{2}\Delta t\right)$ — среднее количество изделий, отказавших в период времени $(t+\Delta t)$

$$n\left(t + \frac{1}{2}\Delta t\right) = n(t) + \frac{1}{2}n(\Delta t).$$

5.Вероятность безотказной работы за время $\left(t + \frac{1}{2}\Delta t\right)$

$$P\left(t + \frac{1}{2}\Delta t\right) = \frac{N_0 - n\left(t + \frac{1}{2}\Delta t\right)}{N_0}.$$

6. Частота отказов, c^{-1}

$$f\left(t + \frac{1}{2}\Delta t\right) = \frac{n(\Delta t)}{N_0(\Delta t)}.$$

7. Интенсивность отказов, c^{-1}

$$\lambda\left(t+\frac{1}{2}\Delta t\right) = \frac{n(\Delta t)}{N_{\rm cp}\left(t+\frac{1}{2}\Delta t\right)\Delta t}.$$

Задача 2На испытание было поставлено N_0 однотипных подшипниковых узлов перемешивающих устройств. За первое время t, ч, отказало n(t) изделий. За время Δt , ч, отказало $n(\Delta t)$ изделий. Определить вероятность безотказной работы за время $t(t+\Delta t)u(t+\frac{1}{2}\Delta t)$, а также частоту и интенсивность отказов узлов в промежутке времени от t до $(t+\Delta t)$ часов.

Исходные данные для расчета представлены в табл. 1 приложения.

Рассмотрим, как меняются основные характеристики надежности функционирования оборудования в течение достаточно дли-тельного

промежутка времени. Для этого заданное количество единиц оборудования, не подлежащего ремонту, было подвергнуто испытанию. Отказы оборудования регистрировались через равные промежутки времени.

1. Вероятность безотказной работы

$$P(t_i) = \frac{N_0 - n(t)_i}{N_0},$$

где N_0 — общее количество образцов неремонтируемой аппаратуры; $\mathbf{n}(t_i)$ — количество отказов, произошедших в наблюдаемый промежуток времени; t_i — текущее время испытаний, ч

$$t_i = t_{i-1} + \Delta t_i.$$

2. Частота отказов, y^{-1}

$$f(\bar{t}_i) = \frac{\mathrm{n}(\Delta t)_i}{N_0(\Delta t)},$$

где $ar{t}_i$ — среднее время, ч

$$\bar{t}_i = \bar{t}_{i-1} - \frac{1}{2} \Delta t_i \,.$$

3. Интенсивность отказов, y^{-1}

$$\lambda(\bar{t}_i) = \frac{\mathsf{n}(\Delta t)_i}{\bar{N}_i(\Delta t)},$$

где N_i — среднее количество единиц исправного оборудования к среднему моменту времени t_i

$$\overline{N}_i = \overline{N}_{i-1} + \frac{1}{2}n(\Delta t)_i.$$

4. Результаты вычислений оформляются в виде табл. 2 приложения. 5 Графическая зависимость вероятности безотказной работы строится как функция текущего времени $P(t_i) = f(t_i)$, частоты и интенсивности отказов – как функции среднего текущего времени $f(\bar{t}_i)$, $\lambda(\bar{t}_i)$.

Задача 3 На испытании находилось N_0 образцов неремонтируемой аппаратуры. Число отказов $n(\Delta t)_i$ фиксировалось через каждые Δt часов работы. Данные об отказах приведены в таблице. Определить характеристики надежности и построить зависимость ха-рактеристик от времени: P(t), $\lambda(t)$, f(t).

Исходные данные для расчета представлены в табл. 3 приложения. Среднее время безотказной работы

Среднее время безотказной работы элемента определяется как

$$T(t) = \int_{0}^{\infty} \tau f(\tau) d\tau$$

ИЛИ

$$T(t) = \int_{0}^{\infty} P(t)dt.$$

Когда испытываемая система восстанавливается путем технического обслуживания и ремонта, то среднее время безотказной работы называется средней наработкой до отказа или средней наработкой на отказ.

В случае, когда известно время наступления первого отказа, а также количество отказов в заданный промежуток времени, средняя наработка на отказ может быть определена в два этапа.

1. Общая наработка за период времени наблюдений, ч

$$T_{
m oбiц}=\ t_{
m K}-t_{
m H}$$
 ,

 $t_{\rm H}$ — время первого отказа и период наблюдений, соответственно, ч Среднюю наработку на отказ, предварительно приняв

$$\sum_{1}^{n} t_i = T_{\text{общ}}$$
 ,

определить как

$$\bar{T} = \frac{\sum_{1}^{n} t_i}{n},$$

общее количество отказов к моменту времени $t_{\rm k}$.

 $\it 3adaчa \ 4$ До начала наблюдения за работой одного экземпляра перемешивающего устройства реактора оно проработало $\it t_{\rm H}$ часов.

K концу наблюдения наработка устройства составила $t_{\rm K}$ часов. Требуется определить среднюю наработку на отказ, если за период наблюдения зарегистрировано n отказов.

Исходные данные для расчета представлены в табл. 4 приложения.

Прогнозирование надежности

Для теории и практики надежности очень важно знать вид и характер функции интенсивности отказов $\lambda(t)$. К настоящему времени накоплен богатый экспериментальный материал по их виду. В результате его анализа обнаружилось, что названные кривые имеют идентичный качественный характер. Это позволило представить их в инженерных целях в обобщенном виде (рис. 2).

Типичная функция интенсивности отказов может быть разделена на три периода.

Первый, сравнительно небольшой по времени, где наблюдается сильное уменьшение интенсивности отказов, назван периодом приработки изделия. Второй, характеризующийся постоянным значением интенсивности отказов, называется периодом нормальнойэксплуатации. Третий период, в течение которого интенсивность отказов постоянно увеличивается, назван периодом катастрофических износовых или закономерных постепенных отказов.

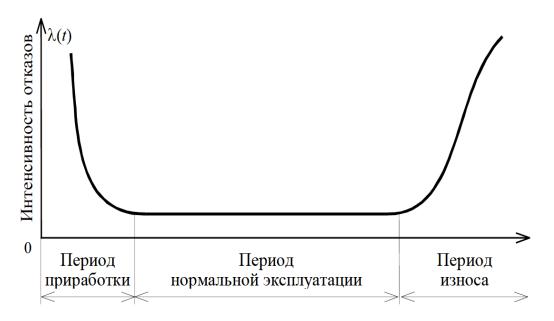


Рис. 2 Интенсивность отказов в течение срока службы изделия

Надежность в период нормальной эксплуатации. Экспоненциальный закон распределения

В этот период постепенные отказы еще не проявляются, и надежность изделий характеризуется внезапными отказами. Эти отказы вызваны неблагоприятным стечением обстоятельств и поэтому имеют постоянную интенсивность, не зависящую от возраста изделия

$$\lambda = \lambda = const$$
.

При этом вероятность безотказной работы

$$P(t) = e^{-\int_0^t \lambda dt} = e^{-\lambda t} .$$

Она подчиняется экспоненциальному закону распределения времени безотказной работы и одинакова за любой одинаковый промежуток времени в период нормальной эксплуатации (рис. 3).

Экспоненциальным законом распределения можно аппроксимировать время безотказной работы широкого круга объектов: особо ответственных, эксплуатируемых в период после окончания приработки и до существенного проявления постепенных; оборудования с последовательной заменой отказавших элементов; машин и аппаратов вместе с электро- и

гидрооборудованием и системами управления и др.; сложных объектов, состоящих из многих элементов.

Значительным достоинством экспоненциального распределения является его простота, так как оно имеет только один параметр.

В случае, когда (λt) $\leq 0,1$, формула для вероятности безотказной работы упрощается в результате разложения в ряд и отбрасывания малых членов

$$P(t) = 1 - \lambda t + \frac{(\lambda t)^2}{2!} = \frac{(\lambda t)^3}{3!} + \dots \approx 1 - \lambda t.$$

Плотность распределения, в общем случае, для экспоненциального распределения принимает вид

$$f(t) = -\frac{dP(t)}{dt} = \lambda e^{-\lambda t} .$$

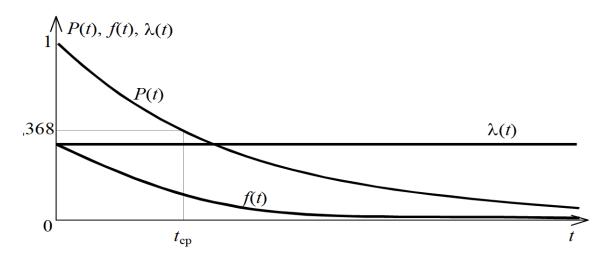


Рис. 3 Функция плотности вероятности f(t), интенсивности отказов $\lambda(t)$ и функция вероятности безотказной работы P(t) при экспоненциальном распределении

Задача по расчету надежности в период нормальной эксплуатации может быть построена следующим образом.

Определяется величина λt .

В случае, если λ $t \le 0,1$, то вероятность безотказной работы рассчитывается по приближенной зависимости.

Если λ t> 0,1, то вероятность безотказной работы рассчитывается по точной зависимости.

Задача 5 Определить вероятность отсутствия внезапных отказов технологического оборудования в течение времени t, ч, соответствующего периоду нормальной эксплуатации, если интенсивность отказов составляет λ , ч $^{-1}$.

Исходные данные для расчета представлены в табл. 5 приложения.

Оценка надежности в период постепенных отказов

Для постепенных отказов нужны законы распределения времени безотказной работы, которые дают вначале низкую плотность распределения, затем максимум и далее падение (рис. 4), связанное с уменьшением числа работоспособных элементов.

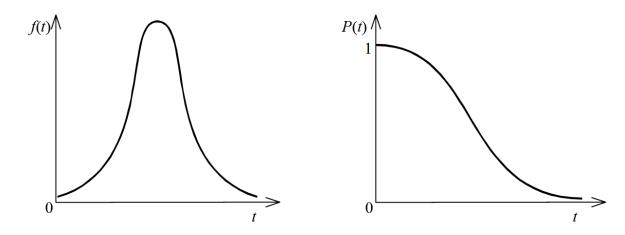


Рис. 4 Функция плотности вероятности и функция вероятности безотказной работы при нормальном распределении

Нормальное распределение

В связи с многообразием причин и условий возникновения отказов в этот период для описания надежности применяют несколько законов распределений, которые устанавливают путем аппроксимации результатов испытаний или наблюдений в эксплуатации. Нормальное распределение является наиболее универсальным, удобным и широко применяемым для практических расчетов.

Распределение всегда подчиняется нормальному закону, если на изменение случайной величины оказывают влияние многие примерно

равнозначные факторы. Нормальному распределению подчиняется наработка до отказа многих восстанавливаемых и невосстанавливаемых изделий, размеры и ошибки измерений деталей и т.д.

Плотность распределения оценивается по формуле

$$f(t) = \frac{1}{S\sqrt{2\pi}} e^{\frac{(t-m_t)^2}{2S^2}}.$$

Распределение имеет два независимых параметра: математическое ожидание m_t и среднее квадратическое отклонение S.

Интегральная функция распределения определяется как

$$F(t) = \int_{-\infty}^{t} f(t)dt.$$

Вероятность отказа и вероятность безотказной работы соответственно равны

$$Q(t) = F(t);$$

$$P(t) = 1 - F(t).$$

Вычисление интегралов заменяют использованием таблиц. Таблицы для нормального распределения в функции $(t-m_t)$ и S были бы громоздкими, так как имели бы два независимых параметра. Можно обойтись небольшими таблицами для нормального распределения, у которого $m_x=0$ и S=1. Для этого распределения функция плотности составит

$$f_0(x) = \frac{1}{\sqrt{2\pi}} e^{\frac{x^2}{2}}$$

и имеет одну переменную x. Величина x является центрированной, так как $m_x=0$, и нормированной, так как $S_x=1$.

Функция распределения – интеграл от плотности распределения

$$F_0(x) = \int_{-\infty}^x f_0(x) dx.$$

Для использования таблиц следует применять подстановку $x = \frac{t-m_t}{S}$. При этом xназывается квантилью нормированного нормального распределения и обозначается u_p .

Плотность распределения, вероятность безотказной работы и вероятность отказа, соответственно, определяются как

$$f(t) = \frac{\phi_0(x)}{S};$$

$$Q(t) = F_0(x);$$

$$P(t) = 1 - F_0(x),$$

где $\phi_0(x)$, $F_0(x)$ — значения ординат плотности нормированного нормального распределения (табл. 7 приложения) и значения функции нормированного нормального распределения (табл. 6 приложения), соответственно.

В табл. 8 приложения приведены непосредственно значения P(t) в зависимости от $x=u_p=\frac{(t-m_t)}{S}$ в употребительном диапазоне.

Задача оценки вероятности безотказной работы за данное время или за данную наработку решается следующим образом.

1. Находим квантиль нормального распределения

$$u_p = -\frac{t - m_t}{S},$$

где m_t — математическое ожидание ресурса работы оборудования, ч; t — ресурс по износу, ч; S — среднеквадратическое отклонение ресурса по износу, ч.

2. По табл. 8 приложения, зная квантиль нормального распределения определяем вероятность безотказного работы P(t).

Задача 6 Оценить вероятность безотказной работы P(t) в течение t, ч, изнашиваемого подвижного сопряжения, если ресурс по износу подчиняется нормальному закону распределения с параметрами m_t , ч, и S, ч.

Исходные данные для расчета представлены в табл. 9 приложения.

Помимо задачи оценки вероятности безотказной работы за данное время или за данную наработку встречается обратная задача — определение времени или наработки, соответствующих заданной вероятности безотказной работы, которая решается следующим образом.

- 1. По табл. 8 приложения, зная вероятность безотказного работы P(t), определяем квантиль нормального распределения u_P .
 - 2. Ресурс работы оборудования рассчитывается по формуле

$$t=m_t+u_PS.$$

Задача 7 Оценить P(t)-й ресурс зубчатого колеса редуктора, если известно, что долговечность детали ограничена по износу, ресурс подчиняется нормальному распределению с параметрами m_t , ч, и S, ч.

Исходные данные для расчета представлены в табл. 9 приложения.

Усеченное нормальное распределение

Усеченное нормальное распределение получается из нормального при ограничении интервала изменения случайной величины. Оно, в частности, вносит уточнение в расчеты надежности по сравнению с нормальным распределением при больших значениях коэффициента вариации.

При этом функция плотности распределения записывается так же, как плотность нормального распределения, но с коэффициентом пропорциональности c:

$$f(t) = \frac{c}{S\sqrt{2\pi}}e^{\frac{(t-t_0)^2}{2S^2}},$$

где t_0 — значение случайной величины, соответствующей максимумуf(t), и называется модой.

Коэффициент c для распределения, ограниченного пределами изменения времени от a до b, определяется из условия

$$\int_{a}^{b} f(t)dt = 1 = c[F(b) - F(a)],$$

где F(a), F(b) — значения функции нормального распределения для предельных значений t. Тогда

$$c = \frac{1}{F(b) - F(a)}.$$

Если пользоваться функцией F_0 нормального распределения нормированной и центрированной случайной величины, то можно записать

$$c = \frac{1}{F_0\left(\frac{b-t_0}{S}\right) - F_0\left(\frac{a-t_0}{S}\right)}.$$

Основное применение усеченного нормального распределения имеет с коэффициентом с с параметрами a=0 и $b=\infty$, когда в задачах надежности отражается невозможность отказов при отрицательных значениях времени. Тогда

$$c = \frac{1}{F_0\left(\frac{t_0}{S}\right)}.$$

В этом случае значения коэффициента c можно выбрать в зависимости от соотношения $\frac{t_0}{\varsigma}$

Вероятность безотказной работы

$$P(t) = 1 - F_0 \left(\frac{t - t_0}{S} \right).$$

Примером усеченных распределений может быть распределение параметра качества изделий после отбраковки части изделий по этому параметру.

Задача по нахождению параметров надежности по усеченному нормальному распределению может быть построена следующим образом.

1.Определяется коэффициент пропорциональности

$$c = \frac{1}{F_0\left(\frac{b-t_0}{S}\right) - F_0\left(\frac{a-t_0}{S}\right)},$$

где $F_0\left(\frac{b-t_0}{S}\right)$, $F_0\left(\frac{a-t_0}{S}\right)$ —значения функции, принимаемые по табл. 6 приложения в зависимости от значения аргумента $(b-t_0)/S$, $(a-t_0)/S$.

2. Вычисляется плотность распределения

$$f(t) = \frac{c}{S\sqrt{2\pi}}e^{\frac{(t-t_0)^2}{2S^2}} = \frac{c\phi\left(\frac{t-t_0}{S}\right)}{S},$$

где $\phi\left(\frac{t-t_0}{S}\right)$ —значение нормированной функции, принимаемое по табл. 6 приложения в зависимости от значения аргумента $(t-t_0)/S$.

4. Интенсивность отказов

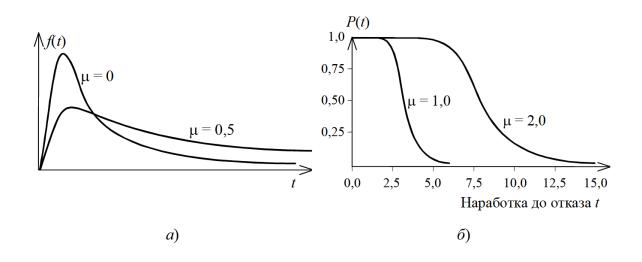
$$\lambda(t) = \frac{f(t)}{P(t)}.$$

 $\it 3adaua~8~$ Оценить вероятность безотказной работы изделия к моменту времени $\it t$, ч, ограниченного пределами изменения от $\it a$ до $\it b$, если ресурс распределен по усеченному нормальному закону распределения со средним квадратическим отклонением наработки на отказ $\it S$ и модой $\it t_0$.

Исходные данные для расчета представлены в табл. 10 приложения.

Логарифмически нормальное распределение

В распределении данного типа логарифм случайной величины распределяется по нормальному закону. Как распределение положительных величин оно несколько точнее, чем нормальное, описывает наработку до отказа деталей (рис. 5). Его успешно применяют для описания наработки подшипников качения и скольжения, электроламп и других изделий.


Логарифмически нормальное распределение удобно для случайных величин, представляющих собой произведение значительного числа случайных исходных величин, подобно тому как нормальное распределение удобно для суммы случайных величин.

Плотность распределения (рис. 5, a) описывается зависимостью

$$f(t) = \frac{c}{St\sqrt{2\pi}}e^{\frac{(lnt-\mu)^2}{2S^2}},$$

где μ и S — параметры, оцениваемые по результатам испытаний,

$$-\infty < \mu < \infty, S > 0$$
.

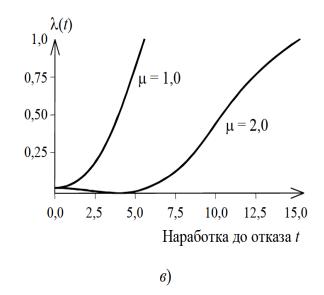


Рис. 5 Характеристики логарифмически нормального распределения:

а — плотность распределения наработки до отказа при параметре $\sigma = 1$; б — вероятность безотказной работы при параметре распределения $\sigma = 0,2$; в — интенсивность отказов при параметре распределения $\sigma = 0,2$

Так при испытании N изделий до отказа

$$\mu = \mu^* = \frac{\sum lnt_i}{N}, S \approx S = \sqrt{\frac{1}{N-1}\mu^*(\sum lnt_i - \mu^*)^2},$$

где μ^* и s – оценка параметров μ и S.

Вероятность безотказной работы можно определить по таблицам для нормального распределения (табл. 6 приложения) в зависимости от значения аргумента $\frac{\ln t - \mu}{s}$.

Расчет основных параметров надежности по логарифмически нормальному закону распределения производится следующим образом.

1. Плотность распределения

$$f(t) = \frac{c}{St\sqrt{2\pi}}e^{\frac{(\ln t - \mu)^2}{2S^2}} = \frac{\varphi_0\left(\frac{\ln t - \mu}{S}\right)}{St},$$

где $\varphi_0\left(\frac{\ln t - \mu}{S}\right)$ —нормированная функция, значения которой принимаются по табл. 7 приложения в зависимости отзначения аргумента $\frac{\ln t - \mu}{S}$.

3. Вероятность безотказной работы

$$P(t) = 1 - F_0 \left(\frac{lnt - \mu}{S} \right),$$

где $F_0\left(\frac{\ln t - \mu}{S}\right)$ — значение нормированной функции, принимаемое по табл. 6 приложения в зависимости от значенияаргумента $\frac{\ln t - \mu}{S}$.

4. Интенсивность отказов

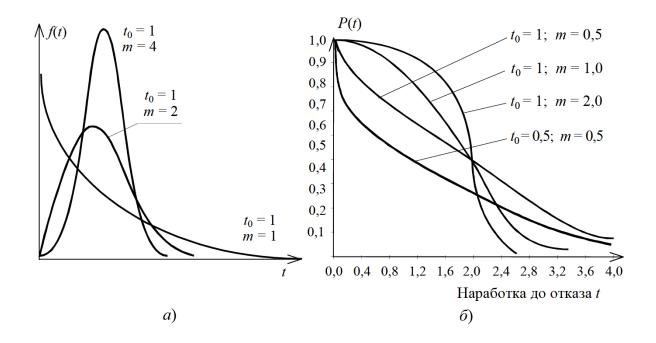
$$\lambda(t) = \frac{f(t)}{P(t)}.$$

 $\it 3adaua$ 9 Наработка узла технологического аппарата имеет логарифмически нормальное распределение с параметрами μ и $\it S$. Найти вероятность безотказной работы узла, интенсивность и частоту отказов при наработке, составляющей $\it t$, ч.

Исходные данные для расчета представлены в табл. 11 приложения.

Распределение Вейбулла

Это довольно универсальное распределение, охватывающее путем варьирования параметров широкий диапазон случаев изменения


вероятностей. Наряду с логарифмически нормальным распределением оно удовлетворительно описывает наработку деталей и узлов технологического оборудования по усталостным разрушениям, наработку до отказа подшипников, электроламп и т.п. Оно применяется также для оценки надежности по приработочным отказам.

Распределение характеризуется следующей функцией вероятности безотказной работы (рис. 6)

$$P(t)=e^{-\frac{t_m}{t_0}}.$$

Интенсивность отказов

$$\lambda(t) = \frac{m}{t_0} t^{m-1}.$$

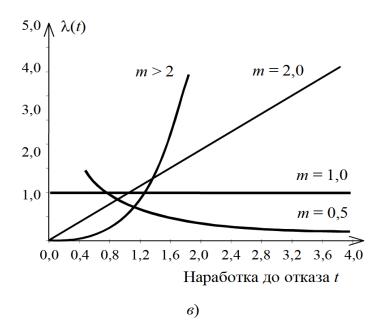


Рис. 6 Характеристики распределения наработки до отказа по закону Вейбулла:

а — плотность распределения наработки до отказа; б — вероятность безотказной работы при параметре масштаба $\theta = 1$; в — интенсивность отказов при параметре масштаба $\theta = 1$

Плотность распределения Вейбулла имеет вид

$$f(t) = \frac{m}{t_0} t^{m-1} e^{-\frac{t^m}{t_0}}.$$

Распределение Вейбулла имеет два параметра: m — параметр формы; t_0 — параметр масштаба;

$$m > 0$$
, $t_0 > 0$.

где b_m , c_m – коэффициенты, определяемые по табл. 12 приложения в зависимости от параметра формы.

Форма зависимости параметров надежности от времени в соответствии с распределением Вейбулла зависит от параметра формы.

При m< 1 функция $\lambda(t)$ и f(t) наработки до отказа убывающие.

При m=1 распределение превращается в экспоненциальное $\lambda(t)$ = const и f(t) – убывающая функция.

При m>1 функция f(t) одновершинная, функция $\lambda(t)$ — непрерывно возрастающая при 1 < m < 2 с выпуклостью вверх, а при m > 2— с выпуклостью вниз.

При m = 2 функция $\lambda(t)$ является линейной и распределение Вейбулла превращается в так называемое распределение Рэлея.

При m = 3,3 распределение Вейбулла близко к нормальному.

 $\it 3adaua$ 10 Оценить вероятность безотказной работы, частоту и интенсивность отказов электроламп, входящих в систему освещения цеха химического производства, в течение $\it t$ часов, если ресурс электроламп подчинен распределению Вейбулла с параметрами $\it t_0$, ч и $\it m$.

Исходные данные для расчета представлены в табл. 13 приложения.

Оценка надежности на основе статистической информации

Как уже отмечалось выше, вопрос о выборе закона распределения является одним из ключевых на конечной стадии расчета надежности при наличии статических данных. В частности, от принятия той или иной будет достоверность полученных гипотезы зависеть результатов, эффективность сделанных выводов и рекомендаций. К сожалению, фактические наблюдения показывают, что изменчивость законов распределений встречается весьма часто, причем для одних и тех же объектов. Бывает. что относительно небольшое изменение объема статических данных, условий или режимов эксплуатации или даже качества изготовления деталей (хотя и в пределах назначенных допусков) может повлиять на нулевую гипотезу, т.е. изменить либо параметры закона распределения, либо даже его вид.

Практические примеры показывают, что одних рекомендаций в принятии какого-то закона распределения оказывается недостаточно. В каждом случае, и даже для новой партии однотипных объектов, идентичных на первый взгляд предыдущей, необходимо производить тщательную проверку различными способами и по различным критериям.

Применение специальных методов проверки гипотезы о выдвинутом типе теоретического закона распределения должно носить всесторонний характер. Установлено, что для одной и той же выборки постоянного объема

использование двух различных критериев иногда дает противоположные результаты, т.е. получается, что в равной степени можно принимать тот или другой закон. Соответствующими расчетами было показано, что для различных параметров законов возможно появление зон практически полного совпадения вероятности безотказной работы. Этим частично объясняется факт равновозможного принятия на некотором интервале наработки двух (или даже нескольких) законов.

Вместе с тем в силу специфических особенностей использования различных критериев проверки правильности выбора типа теоретического распределения одна и та же нулевая гипотеза, с одной стороны, может быть отвергнута, а с другой – принята.

Таким образом, не всегда можно получить однозначный ответ на вопрос о принятии конкретного закона распределения. В таких ситуациях наиболее правильный ответ может дать метод трех арбитров, как его условно называют. Его действие основывается на знании и использовании известных критериев и приемов, разработанных как в нашей стране, так и за рубежом. Существует множество зависимостей и положений, которые лежат в основе методов проверки. Однако исследователь должен выбрать из них только три, по которым следует проверять конкурирующие гипотезы о возможности использования того или иного закона распределения. Если два из трех или тем более все три способа дадут подтверждение какого-либо закона, то его следует принять как верный. Если же соотношения количеств за и против у сравниваемых гипотез окажется одинаковым, то предпочтение может получить тот закон, который обеспечивает больший запас достоверности по применяемым критериям с использованием наименьшего уровня риска. Наконец, если ни одна из конкурирующих гипотез (двух сопоставляемых наиболее возможных законов распределений) не получила преимущества, то либо надо проанализировать подобную другую выборочную совокупность, либо просто попытаться подобрать другой закон.

Для быстроты обсчета по критериям метода трех арбитров, где под арбитром подразумевается один из выбранных приемов или критериев оценки применимости теоретического закона распределения, целесообразно использовать ЭВМ.

Рассмотрим отдельные наиболее часто встречающиеся способы проверки соответствия теоретического распределения эмпирическому. Для проверки возможности принятия закона распределения могут применяться следующие основные критерии.

Критерий согласия Пирсона χ^2 . Он является особенно эффективным для больших объемов выборок при n > 100. Но при этом накладывается требование о том, чтобы интервалы вариационного ряда, содержащие менее пяти значений исследуемого признака, группировались с соседними так, чтобы их число в любом интервале было бы больше или равно пяти.

Для использования критерия согласия Пирсона χ^2 необходимо, чтобы эмпирическое распределение было задано в виде последовательности равноотстоящих признаков наблюдаемой случайной величины и соответствующих им частот.

Рассмотрим вариант, когда появляется необходимость проверки возможности использования, например, нормального закона распределения для оценки полученной в результате экспериментальных наблюдений наработки на отказ объекта. Проверка гипотезы должна проводится по следующей процедуре.

1.Весь интервал времени, в течение которого проводятся испытания, разбивается на равные участки $\Delta t_i = \mathrm{const}$, затем для каждого из участков определяется частота попаданий n_i .

2.Вычисляется выборочное среднее время наработки на отказ

$$\bar{t} = \sum_{i=1}^{n} \frac{t_i}{n},$$

где t_i — наработки на отказ объекта, ч; n — объем выборки или сумма всех частот.

3.Определяется выборочное среднеквадратическое отклонение

$$s = \sqrt{\frac{1}{n}\sum_{i=1}^{n}(t_i-\bar{t})^2}.$$

4. Находятся теоретические частоты

$$m_i = \left(\frac{n\Delta t_i}{S}\right)\varphi(u_i),$$

где $\varphi(u_i)$ — табулированная функция, определяемая по табл. 15 приложения в зависимости от величины аргумента u_i

$$u_i = \frac{|t_i - \bar{t}|}{s}.$$

- 5. Заполняется специальная форма (табл. 14 приложения).
- 6. Рассчитывается номинальный критерий Пирсона

$$\chi^2 = \sum \left(\frac{(n_i - m_i)^2}{m_i} \right).$$

7.Из табл. 16 приложения для критических значений точек распределения χ^2 при выбранном уровне значимости α и для числа степеней свободы ν находится критическая точка $\chi^2_{\kappa p}(\alpha, \nu)$.

$$v = k - 3$$
.

где k — число групп выборки или число временных интервалов.

8.Принимается решение о применимости нормального закона распределения. Если

$$\chi_{\rm H}^2 > \chi_{\rm Kp}^2$$
 ,

то гипотеза о нормальности распределения отвергается в силу существенных отличий теоретических и эмпирических частот.

Критерий согласия Колмогорова является менее жестким с точки зрения подтверждения согласованности выбранного теоретического распределения по отношению к фактическому эмпирическому. Считается, что соответствие удовлетворительное, если выполняется условие

$$\Delta = D_{max} \sqrt{n} \leq 1$$
,

где D_{max} — наибольшее отклонение теоретической кривой распределения от экспериментальной по модулю; n — общее число опытных точек.

Критерий согласия Романовского использует отношение вида

$$r = \frac{\chi^2 - \mathbf{k}'}{\sqrt{2k}},$$

где k' – число степеней $k^{'}=v=k-3;\,k$ – число групп выборки или число временных интервалов.

Расхождение между теоретическим и эмпирическим распределением считается несущественным, если r имеет абсолютное значение меньше трех, т.е. в этом случае нормальный закон может быть принят в качестве нулевой гипотезы.

Задача 11 В результате экспериментальных наблюдений за работой технологического объекта были получены *п* значений его наработок на отказ. Проверить возможность использования нормального закона распределения для оценки полученной наработки на отказ. Уровень значимости принят равным α. Проверку произвести по критерию согласия Пирсона и подтвердить гипотезу по критерию согласия Романовского.

Исходные данные для расчета представлены в табл. 17 приложения.

На практике для предварительной оценки закона распределения по экспериментальным данным часто пользуются вероятностной бумагой распределения. Она служит для нанесения на нее отдельных точек, определяемых, например, по табл. 18 приложения, и позволяет определить возможность аппроксимации эмпирических данных с помощью соответствующего закона. Получающееся графическое изображение при этом способе проверки дает такую же наглядную картину как гистограммы или полигоны, характеризующие особенности распределения.

Гистограмма – это ступенчатый график, состоящий из прямоугольников, у которых основаниями служат частные интервалы

(наработок на отказ), а площади равны числу случаев (частостям) попадания в этот интервал наработок.

После нанесения точек на вероятностную бумагу закона распределения по методу наименьших квадратов проводят прямую. Если точки достаточно хорошо ей соответствуют, то это дает основание полагать, что принятая к расчету гипотеза правильна. Используя координатную сетку с проведенной аппроксимирующей прямой, можно непосредственно по графику оценить параметры распределения.

Часто для более надежного выявления закона распределения и исключения ошибок, вызванных субъективными причинами, пользуются специальными вероятностными координатными сетками с подтверждением возможности принятия закона распределения с помощью критерия согласия Колмогорова. Для этого на вероятностной сетке находят точку с наибольшим отклонением от прямой и вычисляют критерий согласия.

В этом случае выявление закона распределения осуществляют в следующей последовательности.

- 1. Подготавливается сводная таблица экспериментальных данных в форме табл. 19 приложения.
 - 2. Строится гистограмма отказов в виде функции $h_i = f(t_i)$.
- 3. Проводятся построения на вероятностных координатных сетках (рис. 7 11). Используют следующие наиболее распространенные вероятностные сетки, которые в случае получения на них прямой линии будут характеризовать определенные законы распределения:
- 1) нормальное распределение; 2) усеченное нормальное распределение; 3) логарифмически нормальный закон распределения; 4) экспоненциальное распределение; 5) распределение Вейбулла Гнеденко.
- 4. Проверяется принятая гипотеза о применении выбранного закона распределения при помощи критерия согласия Колмогорова.

- 4.1. На вероятностной сетке, соответствующей выбранному закону распределения, определяется точка, наиболее отклонившаяся от аппроксимирующей прямой.
 - 4.2.Вычисляется отклонение точки от прямой D_{max} .
 - 4.3. Рассчитывается критерий согласия Колмогорова

$$\Delta = D_{max} \sqrt{k} \le 1$$
,

где k – общее количество интервалов наработок.

На основании критерия Колмогорова принимается решение о применимости принятого закона распределения.

неремонтируемого Задача *12*Опытная образцов партия оборудования была невосстанавливаемого подвергнута ускоренным испытаниям на надежность. В ходе испытаний фиксировалось время функционирования изделия до отказа. По окончании весь интервал времени, в течение которого проводились испытания, разбили на равные участки $\Delta t_i = \mathrm{const}$ и для каждого из участков было определено количество происшедших в них отказов n_i . Определить закон распределения, достаточно точно описывающий наработку изделий на отказ, с использованием вероятностных координатных сеток и критерия согласия Колмогорова.

Исходные данные для расчета представлены в табл. 20 приложения.

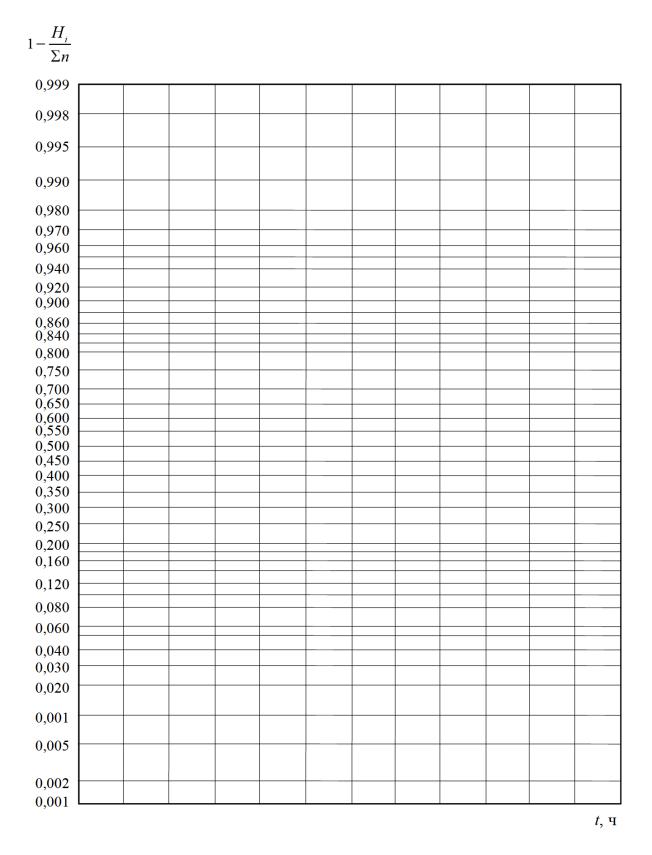


Рис. 7 Вероятностная координатная сетка нормального закона распределения

$$1 - \frac{H_i}{\Sigma n}$$

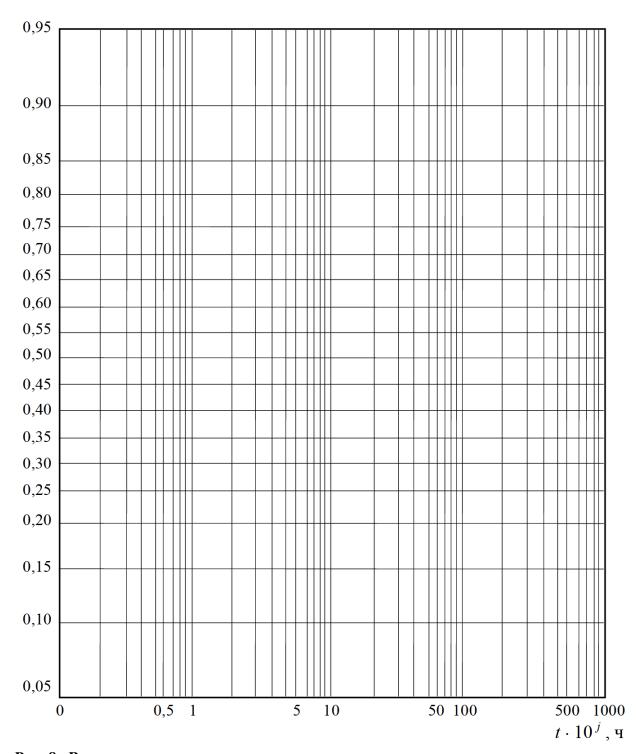


Рис. 8 Вероятностная координатная сетка усеченного нормального распределения

Рис. 9 Вероятностная координатная сетка логарифмически нормального закона распределения

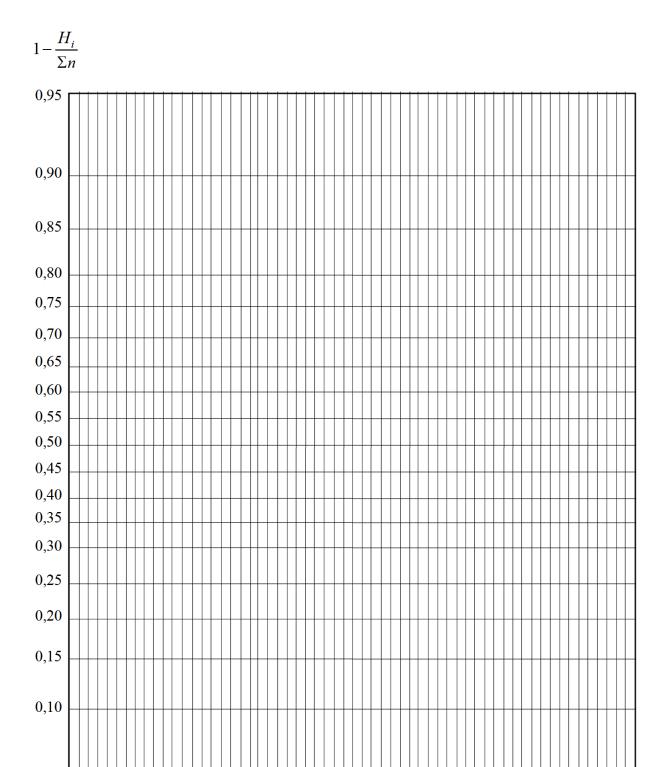


Рис. 10 Вероятностная координатная сетка экспоненциального закона распределение

t, ч

0,05

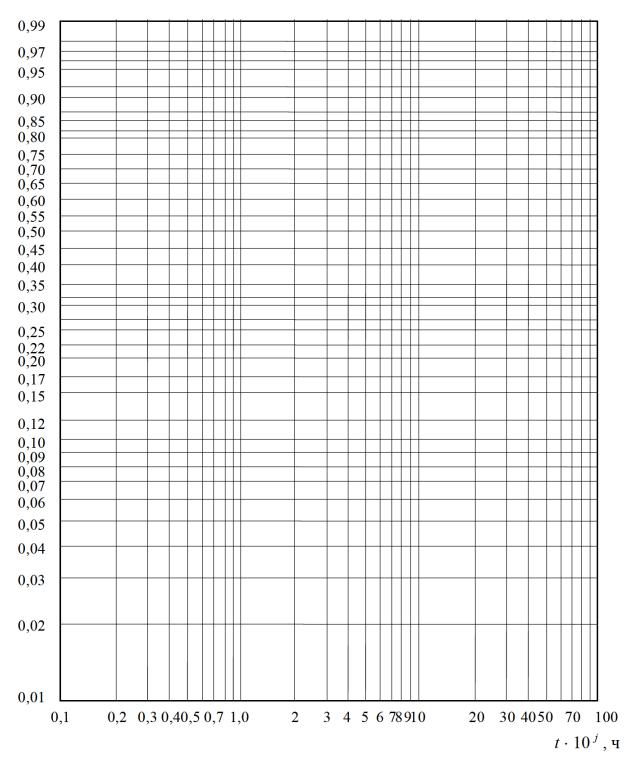


Рис. 11 Вероятностная координатная сетка закона распределения Вейбулла – Гнеденко

ПРИЛОЖЕНИЕ

1 Исходные данные для расчет

2 Результаты вычислений

№	Время испытаний t_i , ч	Вероятность безотказной работы $P(t_i)$	Среднее время испытаний $ar{t}_i$, ч	Частота отказов $fig(ar{l}_iig)$, $\operatorname{Ч}^{-1}$	Интенсивность отказов $\lambda(\bar{l}_i)$, \mathbf{q}^{-1}
1	t_1	$P(t_1)$	$ar{t_1}$	$f(\bar{t_1})$	$\lambda(\bar{t}_1)$
i	$t_{\tilde{t}}$	$P(t_i)$	$ar{t_i}$	$f(\bar{t}_i)$	$\lambda(\overline{t}_i)$

3 Исходные данные для расчета

№ вари- анта	<i>N</i> ₀ ,	Δt ,								$n(\Delta t)_i$	·						
1	1000	150	90	57	37	32	29	29	27	27	26	27	26	25	30	45	70
2	1500	200	150	90	52	44	43	43	43	44	44	45	60	83	110	140	_
3	2400	240	250	130	103	101	100	100	99	100	100	120	141	168	200	230	260
4	3000	160	255	146	135	135	135	134	135	134	135	134	135	138	167	230	270
5	1640	180	170	105	77	77	76	76	76	77	80	114	160	186	_	_	_
6	3560	220	310	228	180	162	156	156	155	156	156	155	156	171	223	280	_
7	2480	340	240	160	126	125	125	126	126	125	126	131	140	150	180	220	250
8	2000	400	225	148	121	117	116	115	115	116	120	149	180	210	235	_	_
9	1700	380	176	90	52	38	33	32	33	32	32	33	40	78	118	160	
10	1820	140	202	123	86	73	71	71	70	71	70	71	72	90	120	150	190
11	2640	160	190	100	94	93	93	93	94	93	94	102	160	205	1	1	_
12	1580	280	192	147	100	72	66	66	65	65	65	66	80	107	130	158	181
13	2890	300	290	170	148	146	146	145	145	145	146	146	146	147	165	224	280
14	3120	400	305	185	170	170	169	170	169	169	170	170	172	176	205	280	_
15	4000	420	350	236	224	224	223	223	224	224	223	224	228	256	320	360	_
16	3680	400	340	215	202	201	202	201	201	202	202	201	201	205	234	300	350
17	3260	360	360	291	254	222	212	211	211	212	211	212	220	280	340	_	
18	1450	250	177	67	52	52	51	52	51	52	51	52	52	56	82	153	190
19	2410	260	210	158	125	121	120	120	121	120	120	121	132	158	185	220	_
20	2750	220	260	169	158	157	157	157	156	156	157	157	157	160	180	250	280
21	3100	200	300	202	164	148	140	139	139	139	140	140	142	150	180	230	284
22	4100	180	390	300	268	260	259	260	260	261	278	320	370	_	_	_	
23	4050	140	400	320	289	275	272	271	272	271	272	276	298	340	391	_	_
24	2090	280	190	123	95	88	84	84	83	84	89	100	122	151	180	204	_
25	3400	240	290	195	156	148	148	147	148	148	147	147	148	152	172	210	280
26	2540	320	208	127	123	123	122	122	123	123	160	208	_	_	_	_	_
27	2620	300	220	140	100	96	95	95	95	96	95	96	98	125	154	207	
28	3870	360	310	226	192	192	193	192	193	192	192	200	238	300	_	_	
29	2450	380	220	136	122	119	118	118	117	118	118	119	121	140	170	210	250
30	1680	240	175	82	60	60	59	59	60	60	61	85	182		_	_	_
31	3900	280	370	262	230	222	221	222	221	222	221	222	225	240	272	310	350
32	1200	200	180	81	58	55	54	53	54	54	55	60	110	152	210	-	_

Продолжение табл. 3

33	1050	200	116	38	27	26	27	26	26	27	27	28	28	40	51	108	130
34	2150	340	240	128	92	91	91	92	92	91	92	99	127	153	188	219	240
35	2560	400	210	162	147	145	143	142	142	142	143	146	152	178	215	250	
36	2400	360	200	113	106	106	105	105	106	105	106	406	112	185	_	ı	
37	2800	380	270	186	155	151	150	150	151	151	150	151	151	160	181	210	250
38	3650	400	390	305	265	264	265	264	265	271	300	380	ı	ı	_	ı	_
39	4180	420	370	286	253	241	240	241	240	240	241	240	241	252	280	320	360
40	3050	360	302	205	170	165	164	164	165	164	165	170	191	230	280	ı	
41	2600	360	238	149	137	136	136	137	136	136	137	137	137	140	160	220	
42	3800	420	360	250	218	209	208	209	208	209	208	209	222	277	340	_	_
43	3600	280	290	169	160	159	159	160	160	159	159	160	160	162	181	280	_
44	2580	260	202	136	115	112	112	111	112	112	113	113	119	140	180	230	270
45	4100	240	380	265	250	250	249	250	249	249	250	249	250	255	284	350	_
46	3250	160	290	190	183	183	182	183	182	182	186	195	250	300	_	-	_
47	2060	200	230	136	132	131	131	132	131	132	137	190	240	_	_	_	_
48	4200	260	360	290	245	231	230	231	230	231	230	231	242	277	318	352	_
49	3960	280	410	338	295	291	290	291	292	312	350	400	_	_	_	_	_
50	5000	400	415	308	302	301	302	301	302	301	302	310	378	420	_	_	_

4 Исходные данные для расчета средней наработки на отказ

№ варианта	<i>t</i> _н , ч	<i>t</i> _к , ч	<i>п</i> , шт.	№ варианта	<i>t</i> _н , ч	<i>t</i> _к , ч	<i>n</i> , шт.
1	248	1456	23	26	150	1000	10
2	250	2080	15	27	134	1250	13
3	164	1640	12	28	290	2400	21
4	203	2580	32	29	315	2000	33
5	298	3060	21	30	307	2350	45
6	309	3250	41	31	269	1670	10
7	240	2470	20	32	209	2560	15
8	352	1940	16	33	218	2150	16
9	398	1280	65	34	245	3210	51
10	400	2560	48	35	261	2100	38
11	254	3080	35	36	134	2160	28
12	169	2580	18	37	109	1050	52
13	150	2000	14	38	254	1160	64
14	124	1890	10	39	369	3450	50
15	105	1560	10	40	400	1450	28
16	287	2450	14	41	158	3100	26
17	236	2900	19	42	327	2100	57
18	300	3450	27	43	194	1800	16
19	364	4000	36	44	137	1950	20
20	254	4200	27	45	251	2500	36
21	260	3800	28	46	250	3260	58
22	289	3000	20	47	300	1450	56
23	219	2500	16	48	280	2100	10
24	207	3600	22	49	137	2680	15
25	257	2450	30	50	150	3020	20

Исходные данные для расчета надежности в период нормальной эксплуатации

№ вари- анта	<i>t</i> , ч	λ, \mathbf{q}^{-1}	№ вари- анта	<i>t</i> , ч	λ, \mathbf{q}^{-1}	№ вари- анта	<i>t</i> , ч	$\lambda,{f q}^{-1}$
1	10 000	$1,00 \cdot 10^{-6}$	18	17 890	$1,11 \cdot 10^{-5}$	35	11 240	$9,37 \cdot 10^{-6}$
2	10 500	$1,92 \cdot 10^{-6}$	19	10 800	$1,95 \cdot 10^{-5}$	36	14 500	$8,03 \cdot 10^{-6}$
3	10 540	$2,88 \cdot 10^{-6}$	20	10 040	$2,22 \cdot 10^{-5}$	37	17 090	$7,48 \cdot 10^{-6}$
4	11 000	$3,71 \cdot 10^{-6}$	21	13 200	$1,78 \cdot 10^{-5}$	38	10 050	$1,38 \cdot 10^{-5}$
5	10 060	$5,09 \cdot 10^{-6}$	22	10 840	$2,29 \cdot 10^{-5}$	39	10 000	$1,50 \cdot 10^{-5}$
6	14 000	$4,41 \cdot 10^{-6}$	23	18 070	$1,44 \cdot 10^{-5}$	40	13 607	$1,19 \cdot 10^{-5}$
7	12 400	$5,85 \cdot 10^{-6}$	24	19 990	$1,37 \cdot 10^{-5}$	41	14 500	$1,20 \cdot 10^{-5}$
8	17 800	$4,68 \cdot 10^{-6}$	25	19 020	$1,51 \cdot 10^{-5}$	42	12 340	$1,51 \cdot 10^{-5}$
9	13 600	$6,93 \cdot 10^{-6}$	26	10 010	$1,00 \cdot 10^{-6}$	43	18 090	$1,09 \cdot 10^{-5}$
10	14 200	$7,41 \cdot 10^{-6}$	27	11 500	$1,75 \cdot 10^{-6}$	44	17 180	$1,22 \cdot 10^{-5}$
11	18 700	$6,23 \cdot 10^{-6}$	28	10 640	$2,86 \cdot 10^{-6}$	45	10 200	$2,18 \cdot 10^{-5}$
12	10 060	$1,27 \cdot 10^{-5}$	29	11 040	$3,69 \cdot 10^{-6}$	46	14 080	$1,67 \cdot 10^{-5}$
13	17 800	$7,82 \cdot 10^{-6}$	30	10 040	$5,10 \cdot 10^{-6}$	47	13 640	$1,82 \cdot 10^{-5}$
14	13 400	$1,12 \cdot 10^{-5}$	31	12 340	$5,01 \cdot 10^{-6}$	48	17 250	$1,51 \cdot 10^{-5}$
15	14 900	$1,09 \cdot 10^{-5}$	32	10 100	$7,18 \cdot 10^{-6}$	49	13 400	$2,05 \cdot 10^{-5}$
16	19 000	$9,17 \cdot 10^{-6}$	33	10 840	$7,69 \cdot 10^{-6}$	50	12 220	$2,35 \cdot 10^{-5}$
17	14 050	$1,32 \cdot 10^{-5}$	34	19 070	$4,94 \cdot 10^{-6}$			

6 Значения функции нормированного нормального распределения

x			Знач	нения фун	нкции F_0	(х) для 0	$0,00 \le x \le 0$	4,99		
	,00	,01	,02	,03	,04	,05	,06	,07	,08	,09
0,0	,5000	,5040	,5080	,5120	,5160	,5199	,5239	,5279	,5319	,5359
0,1	,5398	,5438	,5478	,5517	,5557	,5596	,5636	,5675	,5714	,5753
0,2	, 5793	,5832	,5871	,5910	,5948	,5987	,6026	,6064	,6103	,6141
0,3	,6179	,6217	,6255	,6293	,6331	,6368	,6406	,6443	,6480	,6517
0,4	,6554	,9591	,6628	,6664	,6700	,6736	,6772	,6808	,6844	,6879
0,5	,6915	,6950	,6985	,7019	,7054	,7088	,7123	,7157	,7190	,7224
0,6	,7257	,7291	,7374	,7357	,7389	,7422	,7454	,7486	,7517	,7549
0,7	,7580	,7611	,7642	,7673	,7703	,7734	,7764	,7794	,7823	,7852
0,8	,7881	,7910	,7939	,7967	,7995	,8023	,8051	,8078	,8106	,8133
0,9	,8159	,8186	,8212	,8238	,8264	,8289	,8315	,8340	,8365	,8389
1,0	,8413	,8438	,8461	,8485	,8508	,8531	,8554	,8577	,8599	,8621
1,1	,8643	,8665	,8686	,8708	,8729	,8749	,8770	,8790	,8810	,8830
1,2	,8849	,8869	,8888,	,8907	,8925	,8944	,98962	,8980	,8997	,90147
1,3	,90320	,90490	,90658	,90824	,90988	,91149	,91309	,91466	,91621	,91774
1,4	,91924	,92073	,92220	,92364	,92507	,92647	,92785	,92922	,93056	,93189
1,5	,93319	,93448	,93574	,93669	,93822	,93943	,94062	,94179	,94295	,94408
1,6	,94520	,94630	,94738	,94845	,94950	,95053	,95154	,95254	,95352	,95449
1,7	,95543	,95637	,95728	,95818	,95907	,95994	,96080	,96164	,96246	,96327
1,8	,96407	,96485	,96562	,96638	,96712	,96784	,96856	,96926	,96995	,97062
1,9	,97128	,97193	,97257	,97320	,97381	,97441	,97500	,97558	,97615	,97670
2,0	,97725	,97778	,97831	,97882	,97932	,97982	,98030	,98077	,98124	,98169
2,1	,98214	,98257	,98300	,98341	,98382	,98422	,98461	,98500	,98537	,98574
2,2	,98610	,98645	,98679	, 98713	,98745	,98778	,98809	,98840	,98870	,98899
2,3	,98928	,98956	,99898	,9 ² 009	,9 ² 035	,9 ² 061	,9 ² 086	,9 ² 110	,9 ² 134	,9 ² 157
2,4	,9 ² 180	,9 ² 202 4	,9 ² 224	,9 ² 245	,9 ² 265	,9 ² 285	,9 ² 305	,9 ² 324	,9 ² 343	,9 ² 361

x	Значения функции $F_0(x)$ для $0.00 \le x \le 4.99$											
	,00	,01	,02	,03	,04	,05	,06	,07	,08	,09		
2,5	$,9^2379$,9 ² 396	,9 ² 413	,9 ² 429 7	,9 ² 445	,9 ² 461	,9 ² 476	,9 ² 491 5	$,9^2506$,9 ² 520		
2,6	,9 ² 533	,9 ² 547	,9 ² 560 4	,9 ² 573	,9 ² 585	,9 ² 597	,9 ² 609	,9 ² 620 7	,9 ² 631	,9 ² 642 7		
2,7	,9 ² 653	,9 ² 663	,9 ² 673	,9 ² 683	,9 ² 692 8	$,9^2702$	$,9^{2}711$,9 ² 719 7	,9 ² 728 2	,9 ² 736		
2,8	,9 ² 744	$,9^2752$	$,9^2759$	$,9^2767$	$,9^2774$,9 ² 781	$,9^2788$,9 ² 794	,9 ² 801	,9 ² 807		

	5	3	9	3	4	4	2	8	2	4
2,9	,9 ² 813	,9 ² 819	,9 ² 825	,9 ² 830 5	,9 ² 835	,9 ² 841	,9 ² 846 2	,9 ² 851	,9 ² 855	,9 ² 860 5
3,0	,9 ² 865 0	,9 ² 869 4	,9 ² 873	,9 ² 877 7	,9 ² 881 7	,9 ² 885 6	,9 ² 889	,9 ² 893 0	,9 ² 896 5	,9 ² 899 9
3,1	,9 ³ 032 4	,9 ³ 064 6	,9 ³ 095 7	,9 ³ 126	,9 ³ 155	,9 ³ 183	,9 ³ 211	,9 ³ 237 8	,9 ³ 263	,9 ³ 288 6
3,2	,9 ³ 312	,9 ³ 336	,9 ³ 359	,9 ³ 381 0	,9 ³ 402 4	,9 ³ 423 0	,9 ³ 442 9	,9 ³ 462	,9 ³ 481 0	,9 ³ 499
3,3	,9 ³ 516	,9 ³ 533 5	,9 ³ 549	,9 ³ 565 8	,9 ³ 581	,9 ³ 595 9	,9 ³ 610	,9 ³ 624 2	,9 ³ 637	,9 ³ 650 5
3,4	,9 ³ 663	,9 ³ 675 2	,9 ³ 686 9	,9 ³ 698 2	,9 ³ 709	,9 ³ 719 7	,9 ³ 729	,9 ³ 739 8	,9 ³ 749	,9 ³ 758 5
3,5	,9 ³ 767	,9 ³ 775 9	,9 ³ 784 2	,9 ³ 792 2	,9 ³ 799 9	,9 ³ 807 4	,9 ³ 814 6	,9 ³ 821 5	,9 ³ 828 2	,9 ³ 834 7
3,6	,9 ³ 840 9	,9 ³ 846 9	,9 ³ 852 7	,9 ³ 858	,9 ³ 863 7	,9 ³ 868 9	,9 ³ 873	,9 ³ 878 7	,9 ³ 883 4	,9 ³ 887 9
3,7	,9 ³ 892 2	,9 ³ 896 4	,9 ⁴ 003	,9 ⁴ 042 6	,9 ⁴ 079 9	,9 ⁴ 115 8	,9 ⁴ 150	,9 ⁴ 183 8	,9 ⁴ 215	,9 ⁴ 256 8
3,8	,9 ⁴ 276 5	,9 ⁴ 305	,9 ⁴ 332 7	,9 ⁴ 359	,9 ⁴ 384 8	,9 ⁴ 409 4	,9 ⁴ 433	,9 ⁴ 455 8	,9 ⁴ 477 7	,9 ⁴ 498 8
3,9	,9 ⁴ 519 0	,9 ⁴ 538 5	,9 ⁴ 557	,9 ⁴ 575	,9 ⁴ 592 6	,9 ⁴ 609 2	,9 ⁴ 625	,9 ⁴ 640 6	,9 ⁴ 655	,9 ⁴ 669
4,0	,9 ⁴ 683	,9 ⁴ 696 4	,9 ⁴ 709	,9 ⁴ 721	,9 ⁴ 732 7	,9 ⁴ 743	,9 ⁴ 754	,9 ⁴ 764 9	,9 ⁴ 774 8	,9 ⁴ 784
4,1	,9 ⁴ 393 4	,9 ⁴ 802 2	,9 ⁴ 810	,9 ⁴ 818 6	,9 ⁴ 826	,9 ⁴ 833 8	,9 ⁴ 840 9	,9 ⁴ 847 7	,9 ⁴ 854 2	,9 ⁴ 860 5
4,2	,9 ⁴ 866 5	,9 ⁴ 872	,9 ⁴ 877 8	,9 ⁴ 883	,9 ⁴ 888 2	,9 ⁴ 893	,9 ⁴ 897 8	,9 ⁵ 022 6	,9 ⁵ 065 5	,9 ⁵ 106
4,3	,9 ⁵ 146	,9 ⁵ 183	,9 ⁵ 219	,9 ⁵ 254 5	,9 ⁵ 287	,9 ⁵ 319	,9 ⁵ 349 7	,9 ⁵ 378 8	,9 ⁵ 406	,9 ⁵ 433
4,4	,9 ⁵ 458 7	,9 ⁵ 483	,9 ⁵ 506 5	,9 ⁵ 528 8	,9 ⁵ 550 2	,9 ⁵ 570 6	,9 ⁵ 590 2	,9 ⁵ 608 9	,9 ⁵ 626 8	,9 ⁵ 643
4,5	,9 ⁵ 660 2	,9 ⁵ 675 9	,9 ⁵ 690 8	,9 ⁵ 705	,9 ⁵ 718 7	,9 ⁵ 731 8	,9 ⁵ 744 2	,9 ⁵ 756	,9 ⁵ 767 5	,9 ⁵ 778 4
4,6	,9 ⁵ 788 8	,9 ⁵ 798 7	,9 ⁵ 808	,9 ⁵ 817	,9 ⁵ 825 8	,9 ⁵ 834 0	,9 ⁵ 841 9	,9 ⁵ 849 4	,9 ⁵ 8 5 6	,9 ⁵ 863
4,7	,9 ⁵ 869	,9 ⁵ 876	,9 ⁵ 882	,9 ⁵ 887	,9 ⁵ 893	,9 ⁵ 898	,9 ⁶ 032	,9 ⁶ 078 9	,9 ⁶ 123	,9 ⁶ 166
4,8	,9 ⁶ 206	,9 ⁶ 245	,9 ⁶ 282 2	,9 ⁶ 317	,9 ⁶ 350 8	,9 ⁶ 382 7	,9 ⁶ 413	,9 ⁶ 442 0	,9 ⁶ 469	,9 ⁶ 495 8
4,9	,9 ⁶ 520 8	,9 ⁶ 544 6	,9 ⁶ 567	,9 ⁶ 588 9	,9 ⁶ 609 4	,9 ⁶ 628	,9 ⁶ 647 5	,9 ⁶ 665 2	,9 ⁶ 682	,9 ⁶ 698

7 Значения ординат плотности нормированного нормального распределения

x			Знач	Значения функции $\phi_0(x)$ для $0{,}00 \le x \le 4{,}99$											
	,00	,01	,02	,03	,04	,05	,06	,07	,08	,09					
0,0	,3989	,3989	,3989	,3988	,3986	,3984	,3982	,3980	,3977	,3973					
0,1	,3970	,3965	,3961	,3956	,3951	,3945	,3939	,3932	,3925	,3918					
0,2	,3910	,3902	,3894	,3885	,3876	,3867	,3857	,3847	,3836	,3825					
0,3	,3814	,3802	,3790	,3778	,3765	,3752	,3739	,3725	,3712	,3697					

0,4	,3683	,3668	,3653	,3637	,3621	,3605	,3589	,3572	,3555	,3538
0,5	,3521	,3503	,3485	,3467	,3448	,3429	,3410	,3391	,3372	,3352
0,6	,3332	,3312	,3292	,3271	,3251	,3230	,3209	,3187	,3166	,3144
0,7	,3123	,3101	,3079	,3056	,3034	,3011	,2989	,2966	,2943	,2920
0,8	,2897	,2874	,2850	,2827	,2803	,2780	,2756	,2732	,2709	,2685
0,9	,2661	,2637	,2613	,2589	,2565	,2541	,2516	,2492	,2468	,2444
1,0	,2420	,2398	,2371	,2347	,2323	,2299	,2275	,2251	,2227	,2203
1,1	,2179	,2155	,2131	,2107	,2083	,2059	,2036	,2012	,1989	,1965
1,2	,1942	,1919	,1895	,1872	,1849	,1826	,1804	,1781	,1758	,1736
1,3	,1714	,1691	,1669	,1647	,1626	,1604	,1582	,1561	,1539	,1518
1,4	,1497	,1476	,1456	,1435	,1415	,1394	,1374	,1354	,1334	,1315
1,5	,1295	,1276	,1257	,1238	,1219	,1200	,1182	,1163	,1145	,1127
1,6	,1109	,1092	,1074	,1057	,1040	,1023	,1006	,09893	,09728	,09566
1,7	,09405	,09246	,09089	,08933	,08780	,08628	,08478	,08329	,08183	,08038
1,8	,07895	,07754	,07614	,07477	,07341	,07206	,07074	,06943	,06814	,06687
1,9	,06562	,06438	,06316	,06195	,06077	,05959	,05854	,05730	,05618	,05508
2,0	,05399	,05292	,05186	,05082	,04980	,04879	,04780	,04682	,04586	,04491
2,1	,04398	,04307	,04217	,04128	,04041	,03955	,03871	,03788	,03706	,03626
2,2	,03547	,03470	,03394	,03319	,03246	,03174	,03103	,03034	,02965	,02898
2,3	,02833	,02768	,02705	,02643	,02582	,02522	,02763	,02406	,02349	,02294
2,4	,02239	,02186	,02134	,02083	,02033	,01984	,01936	,01888	,01842	,01797
2,5	,01753	,01709	,01667	,01625	,01585	,01545	,01506	,01468	,01431	,01394
2,6	,01358	,01323	,01289	,01256	,01223	,01191	,01160	,01130	,01100	,01071
2,7	,01042	,01014	,0 ² 987	,0 ² 960 6	,0 ² 934 7	,0 ² 909 4	,0 ² 884 6	,0 ² 860 5	$0^{2}837$	$0^{2}814$
2,8	,0 ² 791 5	$0^{2}769$	$0^{2}748$,0 ² 727	,0 ² 707	$0^{2}687$,0 ² 667	,0 ² 649	,0 ² 630 7	,0 ² 612
2,9	$0^{2}595$	$0^{2}578$,0 ² 561	,0 ² 545 4	,0 ² 529	$0^{2}514$,0 ² 499	,0 ² 484 7	,0 ² 470 5	,0 ² 456 7
3,0	,0 ² 443	,0 ² 430	$0^{2}417$,0 ² 404 9	,0 ² 292 8	0^{2}	,0 ² 369	,0 ² 358	,0 ² 347	,0 ² 337
3,1	,0 ² 326	,0 ² 316	,0 ² 307	,0 ² 297 5	,0 ² 288	,0 ² 279	,0 ² 270	,0 ² 262	,0 ² 254	,0 ² 246
3,2	,0 ² 238	,0 ² 230	,0 ² 223	,0 ² 216	,0 ² 209	,0 ² 209	,0 ² 196 4	,0 ² 190	0^{2}	0^{0} ,02178
3,3	$0^{2}172$,0 ² 166 7	$,0^{2}161$	0^{2}	,0 ² 150	,0 ² 145	,0 ² 141	,0 ² 136	,0 ² 131	,0 ² 127
3,4	$,0^{2}123$,0 ² 119	,0 ² 115	,0 ² 111	,0 ² 107	,0 ² 103 8	,0 ² 100	,0 ³ 968 9	,0 ³ 935 8	,0 ³ 903
3,5	,0 ³ 872 7	,0 ³ 842	,0 ³ 813	,0 ³ 785	,0 ³ 758	,0 ² 731	,0 ³ 706	,0 ³ 681 4	,0 ³ 657	,0 ³ 634
3,6	,0 ³ 611	,0 ³ 590 2	,0 ³ 569	,0 ³ 549	,0 ³ 529	,0 ³ 510	,0 ³ 492	,0 ³ 474 4	,0 ³ 457	,0 ³ 440 8
3,7	,0 ³ 424 8	,0 ³ 409	,0 ³ 394 4	,0 ³ 380	,0 ³ 366	,0 ³ 352	,0 ³ 339	,0 ³ 327	,0 ³ 314	,0 ³ 303
3,8	,0 ³ 291	,0 ³ 281	,0 ³ 270	$,0^3260$	$,0^3250$	$,0^3241$	$,0^3232$,0 ³ 223	,0 ³ 214	,0 ³ 206

	9	0	5	4	6	1	0	2	7	5
3,9	$0^{3}198$	$0^{3}191$	$,0^3183$	$,0^3176$	$0^{3}169$	$,0^{3}163$	$0^{3}156$	$0^{3}150$	$,0^{3}144$ 9	$0^{3}139$
4,0	,0 ³ 133 8	,0 ³ 128	,0 ³ 123	,0 ³ 118	$,0^3114$,0 ³ 109	,0 ³ 105	,0 ³ 100	,0 ⁴ 968 7	,0 ⁴ 929
4,1	,0 ⁴ 892	,0 ⁴ 856	,0 ⁴ 822 2	,0 ⁴ 789	,0 ⁴ 757	$0^{3}726$,0 ⁴ 696 7	,0 ⁴ 668	,0 ⁴ 641	,0 ⁴ 614 7
4,2	,0 ⁴ 589	,0 ⁴ 565	,0 ⁴ 541 8	,0 ⁴ 519	,0 ⁴ 497 9	,0 ⁴ 477	,0 ⁴ 457	,0 ⁴ 438	,0 ⁴ 419	,0 ⁴ 402
4,3	,0 ⁴ 385	,0 ⁴ 369	,0 ⁴ 353	,0 ⁴ 338	,0 ⁴ 324 2	,0 ⁴ 310	,0 ⁴ 297	,0 ⁴ 284 5	,0 ⁴ 272	,0 ⁴ 260
4,4	,0 ⁴ 249	,0 ⁴ 238	,0 ⁴ 228 4	,0 ⁴ 218	,0 ⁴ 209	,0 ⁴ 199	,0 ⁴ 191 2	,0 ⁴ 182	,0 ⁴ 174	,0 ⁴ 167
4,5	,0 ⁴ 159	,0 ⁴ 152	,0 ⁴ 146	,0 ⁴ 139	,0 ⁴ 133	,0 ⁴ 127	,0 ⁴ 121 8	,0 ⁴ 116	,0 ⁴ 111	,0 ⁴ 106 2
4,6	,0 ⁴ 101 4	,0 ⁵ 968	,0 ⁵ 924	,0 ⁵ 883	,0 ⁵ 843	,0 ⁴ 804	,0 ⁵ 768	,0 ⁵ 733	,0 ⁵ 699	,0 ⁵ 667
4,7	,0 ⁵ 637	,0 ⁵ 607	,0 ⁵ 579 7	,0 ⁵ 553	,0 ⁵ 527	,0 ⁵ 503	,0 ⁵ 479	,0 ⁵ 457	,0 ⁵ 436	,0 ⁵ 415
4,8	,0 ⁵ 396	,0 ⁵ 377	,0 ⁵ 359	,0 ⁵ 342 8	,0 ⁵ 326	,0 ⁵ 311	,0 ⁵ 296	,0 ⁵ 282	,0 ⁵ 269	,0 ⁵ 256
4,9	,0 ⁵ 243	,0 ⁵ 232	,0 ⁵ 221	,0 ⁵ 210 5	,0 ⁵ 200	,0 ⁵ 190 7	,0 ⁵ 181 4	,0 ⁵ 172 7	,0 ⁵ 164	,0 ⁵ 156

8 Значения квантилей нормального распределения в зависимости от требуемой вероятности безотказной работы

№	Квантиль u_p	Вероятность безотказной работы $P(t)$	№	Квантиль u_p	Вероятность безотказной работы $P(t)$
1	0,000	0,5000	28	-1,751	0,9600
2	-0,100	0,5398	29	-1,800	0,9641
3	-0,126	0,5500	30	-1,881	0,9700
4	-0,200	0,5793	31	-2,000	0,9772
5	-0,253	0,6000	32	-2,054	0,9800
6	-0,300	0,6179	33	-2,100	0,9821
7	-0,385	0,6500	34	-2,170	0,9850
8	-0,400	0,6554	35	-2,200	0,9861
9	-0,500	0,6915	36	-2,300	0,9893
10	-0,524	0,7000	37	-2,326	0,9900
11	-0,600	0,7257	38	-2,400	0,9918
12	-0,674	0,7500	39	-2,409	0,9920
13	-0,700	0,7580	40	-2,500	0,9938
14	-0,800	0,7881	41	-2,576	0,9950
15	-0,842	0,8000	42	-2,600	0,9953
16	-0,900	0,8159	43	-2,652	0,9960
17	-1,000	0,8413	44	-2,700	0,9965
18	-1,036	0,8500	45	-2,748	0,9970
19	-1,100	0,8643	46	-2,800	0,9974
20	-1,200	0,8849	47	-2,878	0,9980
21	-1,282	0,9000	48	-2,900	0,9981
22	-1,300	0,9032	49	-3,000	0,9986
23	-1,400	0,9192	50	-3,090	0,9990
24	-1,500	0,9332	51	-3,291	0,9995
25	-1,600	0,9452	52	-3,500	0,9998
26	-1,645	0,9500	53	-3,719	0,9999
27	-1,700	0,9554			

9 Исходные данные к задачам 6 и 7

№	Исходнь	ые данные к з	вадаче 6	Исход	ные данные к з	адаче 7
варианта	<i>t</i> , ч	m_t , ч	Ѕ, ч	<i>P</i> (<i>t</i>), %	m_t , ч	Ѕ, ч
1	$1.5 \cdot 10^3$	$4.0 \cdot 10^{3}$	$3,2 \cdot 10^3$	99,0	$1,4 \cdot 10^5$	$3,1 \cdot 10^4$
2	$2.9 \cdot 10^4$	$7,2 \cdot 10^4$	$4,3 \cdot 10^5$	54,0	$1,6 \cdot 10^6$	$3.2 \cdot 10^5$
3	$6.5 \cdot 10^2$	$1,4 \cdot 10^3$	$1,3 \cdot 10^2$	68,0	$1,0 \cdot 10^{7}$	$2,2 \cdot 10^{6}$
4	$4.0 \cdot 10^5$	$1,0 \cdot 10^{6}$	$2,0 \cdot 10^5$	75,5	$1,3 \cdot 10^4$	$3,2 \cdot 10^3$
5	$2,6 \cdot 10^4$	$8,9 \cdot 10^4$	$3,2 \cdot 10^4$	87,2	$1,5 \cdot 10^3$	$3,3 \cdot 10^2$
6	$1,2 \cdot 10^4$	$4,7 \cdot 10^4$	$4,3 \cdot 10^4$	90,1	$5,0 \cdot 10^4$	$2,2 \cdot 10^4$
7	$9.8 \cdot 10^4$	$2,3 \cdot 10^{5}$	$5,3 \cdot 10^4$	88,0	$3.5 \cdot 10^5$	$1,3 \cdot 10^5$
8	$5,0 \cdot 10^{6}$	$1,1\cdot 10^7$	$3.0 \cdot 10^{7}$	50,0	$1,6 \cdot 10^4$	$5,4 \cdot 10^3$
9	$6.0 \cdot 10^3$	$1.5 \cdot 10^4$	$4.5 \cdot 10^3$	62,0	$1.3 \cdot 10^6$	$4.6 \cdot 10^5$

No	Исходн	ые данные к	задаче 6	Исході	ные данные к за	адаче 7
варианта	<i>t</i> , ч	m_t , ч	<i>S</i> , ч	<i>P</i> (<i>t</i>), %	m_t , ч	<i>S</i> , ч
10	$3,6 \cdot 10^{5}$	$1,0 \cdot 10^{6}$	$1,7 \cdot 10^5$	57,0	$1,4 \cdot 10^{7}$	$4.0 \cdot 10^6$
11	$7.5 \cdot 10^4$	$3.8 \cdot 10^{5}$	$8,7 \cdot 10^4$	64,5	$3,4 \cdot 10^{3}$	$4.9 \cdot 10^{3}$
12	$5,3 \cdot 10^3$	$1,4 \cdot 10^4$	$3,4 \cdot 10^3$	87,0	$1,7 \cdot 10^5$	$2.0 \cdot 10^{5}$
13	$8,1 \cdot 10^{5}$	$2.7 \cdot 10^6$	$6,7 \cdot 10^5$	96,5	$4.0 \cdot 10^{3}$	$3,2\cdot 10^3$
14	$4.9 \cdot 10^{6}$	$9,9 \cdot 10^{6}$	$5,0 \cdot 10^{7}$	60,0	$7,2 \cdot 10^4$	$4.3 \cdot 10^{5}$
15	$1,0 \cdot 10^2$	$2,6 \cdot 10^{2}$	$8.0 \cdot 10^{2}$	99,5	$1,4 \cdot 10^3$	$1.3 \cdot 10^2$
16	$2,6 \cdot 10^{5}$	$5,3 \cdot 10^5$	$9,1 \cdot 10^{5}$	99,9	$1.0 \cdot 10^{6}$	$2.0 \cdot 10^{5}$
17	$1,5 \cdot 10^4$	$5,1 \cdot 10^4$	$9.0 \cdot 10^4$	64,0	$8,9 \cdot 10^4$	$3,2 \cdot 10^4$
18	$3,7 \cdot 10^4$	$8,3 \cdot 10^4$	$1.1 \cdot 10^5$	69,0	$3.8 \cdot 10^{5}$	$8,7 \cdot 10^4$
19	$9,4 \cdot 10^{2}$	$3,4 \cdot 10^{3}$	$4.9 \cdot 10^3$	72,5	$1,4 \cdot 10^4$	$3,4 \cdot 10^{3}$
20	$5.0 \cdot 10^4$	$1,7 \cdot 10^5$	$2.0 \cdot 10^5$	86,2	$2,7 \cdot 10^6$	$6,7 \cdot 10^5$
21	$8,5 \cdot 10^{5}$	$1,5 \cdot 10^{6}$	$9.2 \cdot 10^{5}$	80,8	$9,9 \cdot 10^{6}$	$5,0 \cdot 10^{7}$
22	$1,2 \cdot 10^3$	$3.0 \cdot 10^{3}$	$2,2 \cdot 10^3$	98,0	$2,6 \cdot 10^2$	$8.0 \cdot 10^{2}$
23	$2,3 \cdot 10^{6}$	$6,3 \cdot 10^{6}$	$4,4 \cdot 10^{6}$	90,5	$3.8 \cdot 10^{5}$	$1.4 \cdot 10^4$
24	$3,9 \cdot 10^4$	$9,3 \cdot 10^4$	$5,4 \cdot 10^4$	97,0	$1.5 \cdot 10^3$	$5,2 \cdot 10^2$
25	$7,7 \cdot 10^5$	$2,4 \cdot 10^{6}$	$4.8 \cdot 10^5$	92,8	$5,0 \cdot 10^4$	$2,2 \cdot 10^4$
26	$4,5 \cdot 10^4$	$9,6 \cdot 10^4$	$4,2 \cdot 10^4$	96,4	$3.5 \cdot 10^{5}$	$1,3 \cdot 10^5$
27	$6.0 \cdot 10^2$	$1.8 \cdot 10^{3}$	$3,2 \cdot 10^2$	97,9	$1,6 \cdot 10^4$	$5,4 \cdot 10^3$
28	$2.5 \cdot 10^{3}$	$5,9 \cdot 10^3$	$2,6 \cdot 10^3$	86,0	$1,4 \cdot 10^5$	$4.2 \cdot 10^4$
29	$8,6 \cdot 10^4$	$2,1 \cdot 10^{5}$	$9.5 \cdot 10^4$	56,0	$1,2 \cdot 10^5$	$1,7 \cdot 10^4$
30	$6.1 \cdot 10^4$	$1.3 \cdot 10^5$	$4.9 \cdot 10^4$	52,0	$3.6 \cdot 10^{5}$	$1,3 \cdot 10^5$
31	$2.0 \cdot 10^5$	$8,7 \cdot 10^{5}$	$4.5 \cdot 10^5$	73,4	$5,6 \cdot 10^3$	$2,2 \cdot 10^2$
32	$3.8 \cdot 10^{6}$	$8,4 \cdot 10^{6}$	$2.8 \cdot 10^6$	63,4	$1,2 \cdot 10^3$	$2,4 \cdot 10^2$
33	$8,6 \cdot 10^{4}$	$4,6 \cdot 10^{5}$	$2,2 \cdot 10^5$	59,4	$8,3 \cdot 10^4$	$1,1 \cdot 10^{5}$
34	$6,4 \cdot 10^4$	$3.8 \cdot 10^{5}$	$1,4 \cdot 10^4$	70,8	$3.4 \cdot 10^3$	$4.9 \cdot 10^{3}$
35	$5,1 \cdot 10^2$	$1,5 \cdot 10^3$	$5,2 \cdot 10^2$	85,0	$1,7 \cdot 10^5$	$2.0 \cdot 10^{5}$
36	$5.5 \cdot 10^3$	$5,0 \cdot 10^4$	$2,2 \cdot 10^4$	89,9	$9,6 \cdot 10^4$	$4,2 \cdot 10^4$
40	$4,2 \cdot 10^6$	$1.4 \cdot 10^7$	$4.0 \cdot 10^{6}$	94,8	$1.3 \cdot 10^5$	$4,9 \cdot 10^4$
41	$3,4 \cdot 10^4$	$1,4 \cdot 10^{5}$	$4.2 \cdot 10^4$	99,6	$5,3 \cdot 10^{5}$	$9.1 \cdot 10^{5}$
42	$7,6 \cdot 10^4$	$1.2 \cdot 10^{5}$	$4,2 \cdot 10^{4} \\ 1,7 \cdot 10^{4}$	82,0	$5,1\cdot 10^4$	$9.0 \cdot 10^{4}$
43	$1.9 \cdot 10^{5}$	$3,6 \cdot 10^{5}$	$1.3 \cdot 10^{3}$	75,0	$8,3 \cdot 10^4$	$1,1 \cdot 10^{3}$
44	$2.0 \cdot 10^{3}$	$5,6 \cdot 10^3$	$2,2 \cdot 10^2$	85,0	$3,4 \cdot 10^3$	$4.9 \cdot 10^{3}$
37	$7.0 \cdot 10^4$	$3.5 \cdot 10^5$	$1,3 \cdot 10^5$	88,8	$1.8 \cdot 10^3$	$3,2 \cdot 10^2$
38	$4.0 \cdot 10^3$	$1.6 \cdot 10^4$	$5.4 \cdot 10^3$	66,6	$5,9 \cdot 10^3$	$2.6 \cdot 10^3$
39	$2,4 \cdot 10^{5}$	$1,3 \cdot 10^{6}$	$4,6 \cdot 10^5$	77,7	$2,1 \cdot 10^5$	$9,5 \cdot 10^4$
45	$5,3 \cdot 10^2$	$1.2 \cdot 10^3$	$2,4 \cdot 10^2$	95,8	$1.7 \cdot 10^5$	$2.0 \cdot 10^5$
46	$4.9 \cdot 10^4$	$1.4 \cdot 10^{3}$	$3.1 \cdot 10^4$	65,7	$4.7 \cdot 10^4$	$4.3 \cdot 10^4$
47	$6.4 \cdot 10^{\circ}$	$1,6 \cdot 10^{6}$	$3.2 \cdot 10^5$	86,0	$2,3 \cdot 10^5$	$5,3 \cdot 10^4$
48	$3.0 \cdot 10^{6}$	$1.0 \cdot 10^{7}$	$2,2 \cdot 10^6$	90,0	$1,1 \cdot 10^7$	$3.0 \cdot 10^7$
49	$2.5 \cdot 10^3$	$1,3 \cdot 10^4$	$3,2 \cdot 10^3$	99,0	$1.5 \cdot 10^4$	$4.5 \cdot 10^3$
50	$4.0 \cdot 10^2$	$1,5 \cdot 10^3$	$3,3 \cdot 10^2$	100,0	$1,0 \cdot 10^6$	$1,7 \cdot 10^5$

10 Исходные данные для расчета

№ вари- анта	<i>t</i> , ч	<i>t</i> ₀ , ч	а, ч	<i>b</i> , ч	<i>S</i> , ч	№ вари- анта	<i>t</i> , ч	<i>t</i> ₀ , ч	а, ч	<i>b</i> , ч	S, ч
1	10 254	10 254	10 254	18 322	3362	26	47 500	19 882	23 528	74 012	11 047
2	40 560	39 251	40 560	71 961	13 084	27	94 100	94 100	103 185	146 016	21 632
3	34 700	32 496	34 700	61 138	11 016	28	62 000	60 590	68 059	95 818	14 091
4	12 470	11 300	12 470	21 822	3897	29	32 100	30 657	35 129	49 411	7213
5	36 500	32 007	36 500	63 454	11 231	30	42 000	39 200	46 013	64 399	9333
6	14 700	12 472	14 700	25 392	4455	31	87 400	79 716	95 467	133	19 209

-										501	
7	57 450	47 160	57 450	98 607	17 149	32	45 800	40 821	50 081	69 696	9957
8	64 140	50 934	64 140	109 416	18 865	33	34 120	29 717	37 201	51 731	7338
9	57 800)44 396	57 800	98 009	16 754	34	21 400	18 212	18 486	32 327	4553
10	64 000	47 542	64 000	107 886	18 286	35	65 000	54 052	56 379	97 841	13 684
11	54 120	38 875	54 120	90 708	15 245	36	78 000	63 375	67 600	117 000	16 250
12	14 720	10222	10 426	24 533	4089	37	80 800	64 140	70 304	120 784	16 660
13	32 150	21 580	22 901	53 289	8808	38	71 080	55 123	61 796	105 894	14 506
14	65 420	42 434	46 854	107 854	17 681	39	10 090	7644	8806	14 981	2038
15	14 825	9290	10 674	24 312	3953	40	19 000	14 060	16 568	28 120	3800
16	32 132	19 448	23 253	52 426	8456	41	11 000	7950	9627	16 227	2178
17	65 412	238 228	47 572	106 188	16 990	42	12 200	8612	10 669	17 940	2392
18	36 520	20 601	26 687	58 993	9364	43	45 000	31 019	39 495	65 971	8738
19	12 540	6825	9206	20 160	3175	44	47 200	31 769	41 390	68 984	9077
20	10 000	5250	7375	16 000	2500	45	13 600	8938	9145	19 816	2590
21	12 500	6328	9259	19 906	3086	46	12 800	8211	8646	18 596	2415
22	13 000	6340	9670	20 610	3171	47	11 110	6956	7392	16 094	2077
23	14 000	6579	6646	22 095	3373	48	10 060	6147	6837	14 531	1863
24	16 000	7237	7694	25 144	3810	49	16 800	10 017	11 435	24 199	3083
25	18 400	8010	8962	28 789	4329	50	31 250	18 181	21249	44 886	5682

11 Исходные данные для расчета

№ вари- анта	μ	S	<i>t</i> , ч	№ вари- анта	μ	S	<i>t</i> , ч
1	1,0	61,34	1254	26	-9,9	7,32	4510
2	-0,1	81,53	3146	27	6,4	27,63	9540
3	-0,9	44,27	2850	28	-5,2	143,97	9870
4	2,3	21,59	6500	29	3,1	28,42	6540
5	-5,4	31,74	1480	30	-0,7	29,24	3210
6	1,8	10,21	1000	31	0,2	19,51	3000
7	6,7	1,58	2100	32	-3,7	25,11	7040
8	-2,8	15,38	2900	33	6,4	4,52	9100
9	6,7	1,67	3100	34	-5,8	21,44	9990
10	9,0	0,23	9980	35	1,9	8,61	6600
11	-5,8	14,23	4600	36	-6,7	17,48	8410
12	-3,7	11,51	7800	37	2,0	5,82	2510
13	3,8	4,49	9870	38	-8,0	13,89	1450

14	-6,9	12,06	6540	39	-0,7	7,41	3620
15	8,7	0,31	9230	40	5,1	2,99	8000
16	-4,6	8,91	6430	41	6,4	1,81	7500
17	-5,9	8,13	1230	42	-3,1	8,13	9000
18	0,8	4,48	4560	43	5,6	1,94	6090
19	0,4	4,76	7890	44	-4,7	7,51	3140
20	-1,9	5,82	9510	45	0,9	3,74	2080
21	5,6	1,29	3570	46	0,0	4,72	7890
22	-9,8	8,68	4580	47	-5,1	6,65	3640
23	6,7	0,28	1520	48	4,9	1,06	1250
24	-2,3	4,54	3510	49	0,0	4,18	9870
25	5,8	1,24	6570	50	-1,0	4,17	5410

12 Распределение Вейбулла

№	Параметр формы <i>т</i>	$\frac{1}{m}$	b_m	c_m	Коэффициент вариации $\upsilon = c_m / b_m$
1	0,400	2,5	3,32	10,4	3,14
2	0,417	2,4	2,98	8,74	2,93
3	0,435	2,3	2,68	7,38	2,75
4	0,455	2,2	2,42	6,22	2,57
5	0,476	2,1	2,20	5,27	2,40
6	0,500	2,0	2,00	4,47	2,24
7	0,526	1,9	1,83	3,81	2,08
8	0,556	1,8	1,68	3,26	1,94
9	0,588	1,7	1,54	2,78	1,80
10	0,625	1,6	1,43	2,39	1,67
11	0,667	1,5	1,33	2,06	1,55
12	0,714	1,4	1,24	1,78	1,43
13	0,769	1,3	1,17	1,54	1,32
14	0,833	1,2	1,10	1,33	1,21
15	0,909	1,1	1,05	1,15	1,10
16	1,0	1,0	1,00	1,00	1,00
17	1,1	0,909	0,965	0,878	0,910
18	1,2	0,833	0,941	0,787	0,837
19	1,3	0,769	0,924	0,716	0,775
20	1,4	0,714	0,911	0,659	0,723
21	1,5	0,667	0,903	0,615	0,681
22	1,6	0,625	0,897	0,574	0,640
23	1,7	0,588	0,892	0,540	0,605
24	1,8	0,556	0,889	0,512	0,575
25	1,9	0,526	0,887	0,485	0,547
26	2,0	0,500	0,886	0,463	0,523
27	2,1	0,476	0,886	0,439	0,496
28	2,2	0,455	0,886	0,425	0,480
29	2,3	0,435	0,886	0,409	0,461
30	2,4	0,417	0,887	0,394	0,444
31	2,5	0,400	0,887	0,380	0,428

13 Параметры распределения Вейбулла

№ вари- анта	<i>t</i> , ч	<i>t</i> ₀ , ч	m	№ вари- анта	<i>t</i> , ч	<i>t</i> ₀ , ч	m
1	1247	50	0,4	26	4580	301	0,7
2	3650	8	0,2	27	3412	10	0,2
3	1470	921 150	1,8	28	2140	$4,88 \cdot 10^{7}$	2,2
4	5745	$2,02 \cdot 10^9$	2,5	29	6500	$4,41 \cdot 10^{8}$	2,3
5	6414	74 300	1,3	30	7800	$1,71\cdot 10^9$	2,4
6	5780	297	0,5	31	8080	$3,14 \cdot 10^{10}$	2,5
7	6400	6	0,2	32	7108	437	0,5
8	5412	113	0,4	33	1009	4	0,1
9	1472	804	0,7	34	1900	29 973	0,8
10	3215	$6,74 \cdot 10^7$	2,1	35	1100	1443	0,7
11	6542	$5,53 \cdot 10^9$	2,5	36	1220	242 209	1,8
12	1482	1 200 152	1,9	37	4500	$2,40 \cdot 10^{7}$	1,9
13	3213	$6,98\cdot 10^7$	2,0	38	4720	$1,10 \cdot 10^{9}$	2,0
14	6541	934 590	1,4	39	1360	2 697 398	2,1
15	3652	2 625 630	1,8	40	1025	26 141	1,4
16	1254	32 328	1,0	41	4056	2	0,2
17	1000	14 500	1,1	42	3470	$1,78 \cdot 10^9$	1,7
18	1250	11 021	1,2	43	1247	$3,37\cdot 10^7$	2,3
19	1300	215 839	1,3	44	3650	6501	1,0
20	4750	3 831 433	1,4	45	1280	1131	0,9
21	9410	1 416 084	1,5	46	1111	14	0,5
22	6200	4 409 402	1,6	47	1006	1764	1,2
23	3210	871 923	1,7	48	1680	$2,45 \cdot 10^{8}$	2,4
24	4200	$1,78 \cdot 10^8$	2,2	49	3125	3 474 147	1,9
25	8740	1 078 244	1,5	50	2400	2 126 600	1,8

14 Результаты вычислений

Номер интерва- ла, <i>i</i>	Граница интервалов t_i , ч	u_{i}	Функция $\varphi(u_i)$	Частота <i>т</i> _i	Ч астота n_i	$n_i - m_i$	$(n_i - m_i)^2$	$\frac{\left(n_i - m_i\right)^2}{m_i}$

15 Значения табулированной функции $\varphi(u_i)$

					Соты	е доли				
u_{i}	0	1	2	3	4	5	6	7	8	9
0,0	0,3989	0,3989	0,3989	0,3988	0,3986	0,3984	0,3982	0,3980	0,3977	0,3973
0,1	0,3970	0,3965	0,3961	0,3956	0,3952	0,3945	0,3939	0,3932	0,3925	0,3918
0,2	0,3910	0,3902	0,3894	0,3885	0,3876	0,3867	0,3857	0,3847	0,3836	0,3825
0,3	0,3814	0,3802	0,3790	0,3778	0,3765	0,3752	0,3739	0,3726	0,3712	0,3697
0,4	0,3683	0,3668	0,3652	0,3637	0,3621	0,3605	0,3589	0,3572	0,3555	0,3538
0,5	0,3521	0,3503	0,3485	0,3467	0,3448	0,3429	0,3410	0,3391	0,3372	0,3352
0,6	0,3332	0,3312	0,3292	0,3271	0,3251	0,3230	0,3209	0,3187	0,3166	0,3144
0,7	0,3123	0,3101	0,3079	0,3056	0,3034	0,3011	0,2989	0,2966	0,2943	0,2920
0,8	0,2897	0,2874	0,2850	0,2827	0,2803	0,2780	0,2756	0,2732	0,2709	0,2685
0,9	0,2661	0,2637	0,2613	0,2589	0,2565	0,2541	0,2516	0,2492	0,2468	0,2444
1,0	0,2420	0,2396	0,2371	0,2347	0,2323	0,2299	0,2275	0,2251	0,2227	0,2203
1,1	0,2179	0,2155	0,2131	0,2107	0,2083	0,2059	0,2036	0,2012	0,1989	0,1965
1,2	0,1942	0,1919	0,1895	0,1872	0,1849	0,1826	0,1804	0,1781	0,1758	0,1736
1,3	0,1714	0,1691	0,1669	0,1647	0,1626	0,1604	0,1582	0,1561	0,1539	0,1518
1,4	0,1497	0,1476	0,1456	0,1435	0,1415	0,1394	0,1374	0,1354	0,1334	0,1315
1,5	0,1295	0,1276	0,1257	0,1238	0,1219	0,1200	0,1182	0,1163	0,1145	0,1127

1,6 0,1109 0,1092 0,1074 0,1057 0,1040 0,1023 0,1006 0,0989 0,097	3 0,0957
1,7 0,0940 0,0925 0,0909 0,0893 0,0878 0,0863 0,0848 0,0833 0,081	8 0,0804
1,8 0,0790 0,0775 0,0761 0,0748 0,0734 0,0721 0,0707 0,0694 0,068	1 0,0669
1,9 0,0656 0,0644 0,0632 0,0620 0,0608 0,0596 0,0584 0,0573 0,056	2 0,0551
2,0 0,0540 0,0529 0,0519 0,0508 0,0498 0,0488 0,0478 0,0468 0,045	0,0449
2,1 0,0440 0,0431 0,0422 0,0413 0,0404 0,0396 0,0387 0,0379 0,037	1 0,0363
2,2 0,0355 0,0347 0,0339 0,0332 0,0325 0,0317 0,0310 0,0303 0,029	7 0,0290
2,3 0,0283 0,0277 0,0270 0,0264 0,0258 0,0252 0,0246 0,0241 0,023	5 0,0229
2,4 0,0224 0,0219 0,0213 0,0208 0,0203 0,0198 0,0194 0,0189 0,018	4 0,0180
2,5 0,0175 0,0171 0,0167 0,0163 0,0158 0,0154 0,0151 0,0147 0,014	3 0,0139
2,6 0,0136 0,0132 0,0129 0,0126 0,0122 0,0119 0,0116 0,0113 0,0116	0 0,0107
2,7 0,0104 0,0101 0,0099 0,0096 0,0093 0,0091 0,0088 0,0086 0,008	4 0,0081
2,8 0,0079 0,0077 0,0075 0,0073 0,0071 0,0069 0,0067 0,0065 0,006	3 0,0061
2,9 0,0060 0,0058 0,0056 0,0055 0,0053 0,0051 0,0050 0,0048 0,004	7 0,0046
3,0 0,0044 0,0043 0,0042 0,0040 0,0039 0,0038 0,0037 0,0036 0,003	5 0,0034
3,1 0,0033 0,0032 0,0031 0,0030 0,0029 0,0028 0,0027 0,0026 0,002	5 0,0025
3,2 0,0024 0,0023 0,0022 0,0022 0,0021 0,0020 0,0020 0,0019 0,001	8 0,0018
3,3 0,0017 0,0017 0,0016 0,0016 0,0015 0,0015 0,0014 0,0014 0,001	3 0,0013
3,4 0,0012 0,0012 0,0012 0,0011 0,0011 0,0010 0,0010 0,0010 0,000	0,0009

16 Критические точки распределения χ^2

Число степеней		Урс	овень значимост	иα	
свободы v	0,01	0,005	0,995	0,99	0,975
1	6,63	7,88		0,00016	0,00098
	·		0,00039		-
2	9,21	10,60	0,0100	0,0201	0,0506
3	11,34	12,84	0,0717	0,115	0,216
4	13,28	14,86	0,207	0,297	0,484
5	15,09	16,75	0,412	0,554	0,831
6	16,81	18,55	0,676	0,872	1,24
7	18,48	20,28	0,989	1,24	1,69
8	20,09	21,96	1,34	1,65	2,18
9	21,67	23,59	1,73	2,09	2,70
10	23,21	25,19	2,16	2,56	3,25
11	24,73	26,76	2,60	3,05	3,82
12	26,22	28,30	3,07	3,57	4,40
13	27,69	29,82	3,57	4,11	5,01
14	29,14	31,32	4,07	4,66	5,63
15	30,58	32,80	4,60	5,23	6,26
16	32,00	34,27	5,14	5,81	6,91
18	34,81	37,16	6,26	7,01	8,23
20	37,57	40,00	7,43	8,26	9,59
24	42,98	45,56	9,89	10,86	12,40
30	50,89	53,67	13,79	14,95	16,79
40	63,69	66,77	20,71	22,16	24,43
60	88,38	91,95	35,53	37,48	40,48
120	158,95	163,64	83,85	86,92	91,58

17 Значения наработки на отказ технологического объекта

№ ва- риан- та	α	Значения наработки на отказ
1	0,01	50, 102, 141, 154, 156, 160, 171, 168, 184, 171, 176, 197, 207, 211, 231,
		240, 236, 249, 245, 233, 208, 204, 213, 220, 221, 225, 227, 253, 255, 261,
		264, 275, 280, 289, 293, 297, 324, 342, 400
2	0,005	50, 78, 81, 80, 91, 90, 62, 87, 94, 96, 85, 53, 68, 105, 110, 108, 117, 128,
		139, 147, 124, 130, 158, 163, 175, 183, 194, 180, 210, 138, 147, 225, 259,
		285, 273, 319, 335, 400
3	0,995	49, 100, 138, 151, 153, 157, 168, 165, 180, 168, 172, 193, 203, 207, 226,
		235, 231, 244, 240, 228, 204, 200, 209, 216, 217, 221, 222, 248, 250, 256,
		259, 270, 274, 283, 287, 291, 318, 335, 392

		• ' '
4	0,99	50, 112, 129, 156, 169, 183, 209, 216, 225, 241, 252, 263, 278, 281, 294, 309, 317, 320, 326, 334, 341, 345, 352, 357, 361, 365, 372, 381, 392, 389, 400, 380, 374, 360, 366, 375, 394, 398
5	0,975	35, 71, 98, 107, 108, 111, 119, 117, 128, 119, 122, 137, 144, 147, 161, 167, 164, 173, 170, 162, 145, 142, 148, 153, 154, 156, 158, 176, 177, 181, 184,
6	0.01	191, 195, 201, 204, 206, 225, 238, 278 32, 66, 91, 100, 101, 104, 111, 109, 119, 111, 114, 128, 134, 137, 150, 155,
O	0,01	153, 161, 159, 151, 135, 132, 138, 143, 143, 146, 147, 164, 165, 169, 171, 178, 181, 187, 190, 192, 210, 222, 259
7	0,005	11, 23, 32, 35, 35, 36, 39, 38, 42, 39, 40, 45, 47, 48, 52, 54, 54, 56, 56, 53, 47, 46, 48, 50, 50, 51, 51, 57, 58, 59, 60, 62, 64, 66, 66, 67, 74, 78, 91
8	0,995	49, 101, 139, 152, 154, 158, 169, 166, 181, 169, 174, 194, 204, 208, 228, 237, 233, 246, 242, 230, 205, 201, 210, 217, 218, 222, 224, 249, 251, 257, 260, 271, 276, 285, 289, 293, 319, 337, 394
9	0,99	46, 93, 128, 140, 142, 146, 156, 153, 168, 156, 160, 179, 189, 192, 210, 219, 215, 227, 223, 212, 189, 186, 194, 200, 201, 205, 207, 230, 232, 238, 240,
10	0,975	251, 255, 263, 267, 271, 295, 312, 364 25, 39, 40, 40, 46, 45, 31, 44, 47, 48, 42, 26, 34, 52, 55, 54, 58, 64, 70, 74, 62, 65, 79, 82, 88, 92, 97, 90, 105, 69, 74, 112, 130, 142, 136, 160, 168, 200
11	0,995	41, 84, 116, 127, 129, 132, 141, 139, 152, 141, 145, 162, 171, 174, 190, 198, 195,
-12	0.00	205, 202, 192, 172, 168, 176, 181, 182, 186, 187, 209, 210, 215, 218, 227, 231, 238, 242, 245, 267, 282, 330
12	0,99	41, 85, 117, 128, 129, 133, 142, 139, 153, 142, 146, 163, 172, 175, 192, 199, 196, 207, 203, 193, 173, 169, 177, 183, 183, 187, 188, 210, 212, 217, 219, 228, 232, 240, 243, 246, 269, 284, 332
13	0,975	14, 28, 39, 43, 44, 45, 48, 47, 51, 48, 49, 55, 58, 59, 65, 67, 66, 70, 68, 65, 58, 57, 59, 61, 62, 63, 63, 71, 71, 73, 74, 77, 78, 81, 82, 83, 91, 96, 112
14	0,01	23, 48, 66, 72, 73, 75, 80, 79, 86, 80, 82, 92, 97, 99, 108, 112, 111, 117, 115, 109, 97, 96, 100, 103, 104, 105, 106, 119, 120, 122, 124, 129, 131, 135, 137, 139, 152,
15	0,005	160, 187 15, 30, 42, 46, 47, 48, 51, 50, 55, 51, 52, 59, 62, 63, 69, 72, 70, 74, 73, 69, 62, 61, 64, 66, 66, 67, 68, 75, 76, 78, 79, 82, 83, 86, 87, 89, 97, 102, 119
16	0,995	31, 64, 88, 96, 97, 100, 106, 105, 115, 106, 110, 123, 129, 131, 144, 149, 147, 155, 153, 145, 130, 127, 133, 137, 138, 140, 141, 158, 159, 163, 164, 171, 174, 180, 182, 185, 202, 213, 249
17	0,99	183, 202, 213, 249 30, 60, 84, 91, 92, 95, 101, 100, 109, 101, 104, 117, 123, 125, 137, 142, 140, 148, 145, 138, 123, 121, 126, 130, 131, 133, 134, 150, 151, 155, 156, 163, 166, 171, 174, 176, 192, 203, 237
18	0,975	38, 78, 108, 118, 120, 123, 131, 129, 141, 131, 135, 151, 159, 162, 177, 184, 181, 191, 188, 179, 160, 156, 163, 169, 170, 173, 174, 194, 196, 200, 203, 211, 215, 222,
19	0,995	225, 228, 249, 262, 307 26, 54, 74, 81, 82, 84, 90, 88, 97, 90, 92, 103, 109, 111, 121, 126, 124, 131, 129, 122, 109, 107, 112, 115, 116, 118, 119, 133, 134, 137, 139, 144, 147, 152, 154, 156, 177, 180, 210
20	0,99	170, 180, 210 70, 109, 113, 112, 127, 126, 87, 122, 132, 134, 119, 74, 95, 147, 154, 151, 164, 179, 195, 206, 174, 182, 221, 228, 245, 256, 272, 252, 294, 193, 206,
21	0,975	315, 363, 399, 382, 447, 469, 560 47, 97, 134, 146, 148, 152, 162, 160, 175, 162, 167, 187, 197, 200, 219, 228,
		224, 236, 233, 221, 198, 194, 202, 209, 210, 214, 216, 240, 242, 248, 251, 261, 266, 274, 278, 282, 308, 325, 380
22	0,01	44, 89, 123, 134, 136, 139, 149, 146, 160, 149, 153, 172, 180, 184, 201, 209, 206, 217, 214, 203, 181, 178, 186, 192, 193, 196, 198, 220, 222, 227, 230, 240, 244, 252, 255, 259, 282, 298, 349
23	0,005	29, 60, 83, 91, 92, 94, 101, 99, 108, 101, 104, 116, 122, 124, 136, 141, 139, 147, 144, 137, 123, 120, 125, 130, 130, 133, 134, 149, 150, 154, 156, 162, 165, 170, 173, 175, 191, 201, 236
24	0,995	25, 56, 64, 78, 84, 92, 104, 108, 112, 120, 126, 132, 139, 140, 147, 154, 158, 160, 163, 167, 170, 172, 176, 178, 180, 182, 186, 190, 196, 194, 200, 190, 187, 180, 183, 188, 197, 199
25	0,99	40, 81, 111, 122, 123, 126, 135, 133, 145, 135, 139, 156, 164, 167, 183, 190, 187, 197, 194, 184, 164, 161, 168, 174, 175, 178, 179, 200, 202, 206, 209,
26	0,975	217, 221, 228, 232, 235, 256, 270, 316 43, 88, 122, 133, 135, 138, 148, 145, 159, 148, 152, 170, 179, 182, 199, 207, 204, 215, 211, 201, 179, 176, 184, 190, 191, 194, 196, 218, 220, 225, 228, 237, 232, 245, 256, 276, 205, 245, 256, 276, 205, 245, 256, 276, 205, 245, 256, 276, 276, 276, 276, 276, 276, 276, 27
27	0,995	237, 242, 249, 253, 256, 279, 295, 345 21, 42, 58, 64, 65, 66, 71, 70, 76, 71, 73, 82, 86, 87, 96, 99, 98, 103, 101, 96, 86, 84, 88, 91, 92, 93, 94, 105, 106, 108, 109, 114, 116, 120, 121, 123, 134,
28	0,99	142, 166 12, 20, 20, 20, 23, 22, 16, 22, 24, 24, 21, 13, 17, 26, 28, 27, 29, 32, 35, 37, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20
29	0,975	31, 32, 40, 41, 44, 46, 48, 45, 52, 34, 37, 56, 65, 71, 68, 80, 84, 100 38, 78, 107, 117, 119, 122, 130, 128, 140, 130, 134, 150, 157, 161, 176, 183, 180, 189, 186, 177, 158, 155, 162, 167, 168, 171, 173, 192, 194, 199, 201,
		209, 213, 220, 223, 226, 246, 260, 304

3	0,01	41, 83, 115, 125, 127, 130, 139, 137, 150, 139, 143, 160, 169, 172, 188, 195, 192, 203, 200, 190, 169, 166, 173, 179, 180, 183, 185, 206, 208, 213, 215, 224, 228, 235, 239, 242, 264, 279, 326
3	1 0,005	70, 157, 181, 218, 237, 256, 293, 302, 315, 337, 353, 368, 389, 393, 412, 433, 444, 448, 456, 468, 477, 483, 493, 500, 505, 511, 521, 533, 549, 545, 560, 532, 524, 504, 512, 525, 552, 557
3:	2 0,995	15, 31, 43, 46, 47, 48, 52, 51, 56, 52, 53, 59, 63, 64, 70, 72, 71, 75, 74, 70, 63, 62, 64, 66, 67, 68, 69, 76, 77, 79, 80, 83, 85, 87, 88, 90, 98, 103, 121
3	3 0,99	14, 30, 41, 45, 45, 46, 50, 49, 53, 50, 51, 57, 60, 61, 67, 69, 68, 72, 71, 67, 60, 59, 62, 64, 64, 65, 66, 73, 74, 76, 76, 80, 81, 84, 85, 86, 94, 99, 116
3	4 0,975	29, 59, 82, 89, 90, 93, 99, 97, 107, 99, 102, 114, 120, 122, 134, 139, 137, 144, 142, 135, 121, 118, 123, 127, 128, 130, 132, 147, 148, 151, 153, 159, 162, 167, 170, 172, 188, 198, 232
3.	5 0,975	38, 58, 61, 60, 68, 68, 46, 65, 70, 72, 64, 40, 51, 79, 82, 81, 88, 96, 104, 110, 93, 98, 118, 122, 131, 137, 146, 135, 158, 104, 110, 169, 194, 214, 205, 239, 251, 300
3	6 0,995	35, 72, 99, 109, 110, 113, 121, 119, 130, 121, 124, 139, 146, 149, 163, 169, 167, 176, 173, 164, 147, 144, 150, 155, 156, 159, 160, 179, 180, 184, 186, 194, 198, 204, 207, 210, 229, 241, 282
3	7 0,99	12, 28, 32, 39, 42, 46, 52, 54, 56, 60, 63, 66, 70, 70, 74, 77, 79, 80, 82, 84, 85, 86, 88, 89, 90, 91, 93, 95, 98, 97, 100, 95, 94, 90, 92, 94, 98, 100
3	8 0,975	27, 54, 75, 82, 83, 85, 91, 90, 98, 91, 94, 105, 110, 113, 123, 128, 126, 133, 131, 124, 111, 109, 114, 117, 118, 120, 121, 135, 136, 139, 141, 147, 149, 154, 156, 158, 173, 182, 213
3	9 0,01	62, 98, 101, 100, 114, 112, 78, 109, 118, 120, 106, 66, 85, 131, 138, 135, 146, 160, 174, 184, 155, 162, 198, 204, 219, 229, 242, 225, 262, 172, 184, 281, 324, 356, 341, 399, 419, 500
4	0,005	12, 25, 34, 38, 38, 39, 42, 41, 45, 42, 43, 48, 50, 51, 56, 59, 58, 61, 60, 57, 51, 50, 52, 54, 54, 55, 55, 62, 62, 64, 64, 67, 68, 70, 71, 72, 79, 83, 98
4	1 0,995	48, 98, 136, 148, 150, 154, 164, 162, 177, 164, 169, 190, 199, 203, 222, 231, 227, 240, 236, 224, 200, 196, 205, 212, 213, 216, 218, 243, 245, 251, 254, 265, 269, 278, 282, 286, 312, 329, 385
4	2 0,99	19, 38, 53, 58, 58, 60, 64, 63, 69, 64, 66, 74, 77, 79, 86, 90, 88, 93, 92, 87, 78, 76, 80, 82, 83, 84, 85, 95, 95, 97, 99, 103, 105, 108, 109, 111, 121, 128, 149
4	3 0,975	38, 84, 97, 117, 127, 137, 157, 162, 169, 181, 189, 197, 208, 211, 220, 232, 238, 240, 244, 250, 256, 259, 264, 268, 271, 274, 279, 286, 294, 292, 300, 285, 280, 270, 274, 281, 296, 298
4	4 0,995	39, 79, 109, 119, 121, 124, 132, 130, 143, 132, 136, 153, 160, 163, 179, 186, 183, 193, 190, 181, 161, 158, 165, 170, 171, 174, 176, 196, 198, 202, 205, 213, 217, 224, 227, 230, 251, 265, 310
4	5 0,99	62, 140, 161, 195, 211, 229, 261, 270, 281, 301, 315, 329, 348, 351, 368, 386, 396, 400, 408, 418, 426, 431, 440, 446, 451, 456, 465, 476, 490, 486, 500, 475, 468, 450, 458, 469, 492, 498
4	6 0,975	13, 27, 37, 41, 41, 42, 45, 44, 49, 45, 46, 52, 55, 56, 61, 63, 62, 66, 65, 61, 55, 54, 56, 58, 58, 59, 60, 67, 67, 69, 70, 73, 74, 76, 77, 78, 85, 90, 106
4	7 0,01	70, 157, 181, 218, 237, 256, 293, 302, 315, 337, 353, 368, 389, 393, 412, 433, 444, 448, 456, 468, 477, 483, 493, 500, 505, 511, 521, 533, 549, 545, 560, 532, 524, 504, 512, 525, 552, 557
4	8 0,005	18, 37, 51, 56, 57, 58, 62, 61, 67, 62, 64, 72, 75, 77, 84, 87, 86, 91, 89, 85, 76, 74, 78, 80, 80, 82, 83, 92, 93, 95, 96, 100, 102, 105, 107, 108, 118, 124, 146
4	9 0,995	35, 72, 100, 109, 111, 113, 121, 119, 130, 121, 125, 140, 147, 150, 164, 170, 167, 177, 174, 165, 147, 145, 151, 156, 157, 160, 161, 179, 181, 185, 187, 195, 199, 205, 208, 211, 230, 242, 284
5	0,99	35, 71, 98, 107, 108, 111, 119, 117, 128, 119, 122, 137, 144, 147, 161, 167, 164, 173, 170, 162, 145, 142, 148, 153, 154, 156, 158, 176, 177, 181, 184, 191, 195, 201, 204, 206, 225, 238, 278

18 Данные, наносимые на вероятностную бумагу

x_i	n_i	H_i	$H_i/\sum n_i$	$1-H_i/\sum n_i$

П р и м е ч а н и е. x_i — значение каждого i-го члена вариационного ряда (например, наработка до отказа или между отказами); n_i — число отказов i-го интервала; $\sum n_i$ — общее число отказов; H_i — накопленное количество отказов; H_i — частость отказов; $1 - H_i / \sum n_i$ — вероятность, откладываемая по оси ординат координатной сетки бумаги распределения

19 Сводная таблица экспериментальных данных

№	Интер- валы вариа- цион- ного ряда _{Δt_i, ч}	Число отказов <i>i-</i> го интервала <i>n_i</i>	Условная частота отказов $h_i = \frac{\Delta n_i}{\Delta t_i} \;, \mathbf{q}^{-1}$	Накопленное количество отказов H_i	Частость отказов $R_i = H_i/\sum n_i$	Вероятность отказа $1 - H_i / \sum n_i$
1	Δt_1	n_1	h_1	n_1	R_1	$1-n_1/\sum n_i$
i	Δt_i	n_i	h_i	$\sum n_i$	1	0

20 Результаты ускоренных испытаний невосстанавливаемых изделий на надежность

№ вари-	$\Delta t_{i,}$	n_1	n_2	n_3	n_4	n_5	n_6	n_7	n_8	<i>n</i> ₉	n_{10}	n_{11}	n_{12}	n_{13}	n_{14}	n_{15}	n_{16}	n_{17}	n_{18}	n_{19}
анта	Ч		112	7.5	7.4	,,,	7.0	7.07	***	7.9	7710	7711	112	7713	7714	**13	7710	77	7718	1119
1	60	526	400	310	245	190	150	120	90	70	55	42	32	25	18	13	10	8	3	0
2	60	410	27	7	6	3	3	1	0	0	0	0	0	0	0	0	0	0	0	0
3	10	60	60	45	30	24	21	12	12	10	6	4	4	2	2	2	1	1	1	1
4	60	210	17	8	8	3	3	3	3	3	3	1	1	1	1	1	1	1	0	0
	70	120	120	90	60	48	42	24	24	19	13	8	8	4	5	4	2	2	1	1
6	60	280	18	5	4	2	2	1	0	0	0	0	0	0	0	0	0	0	0	0
7	12 0	140	11	6	6	3	2	2	2	2	2	1	1	1	1	1	1	1	0	0
8	10	165	165	124	83	66	58	33	33	26	17	12	11	6	7	5	3	3	2	1
9	12	340	27	14	14	5	5	5	5	5	5	2	2	2	1	1	1	1	0	0
10	35	84	84	63	42	34	29	17	17	13	9	6	5	3	3	3	2	2	1	1
11	18	160	13	6	6	2	2	2	2	2	2	1	1	1	0	0	0	0	0	0
	0												_	_	_	_				
12	40	78	60	47	36	28	23	18		11	7	6	5	3	3	2	1	1	1	0
13	300	_	20	40	97								267		90	47	20	7	2	1
14	140		10	20	48	67			_		217			83	45	23	10	3	1	1
15	_	310	20	6	4	2	2	1	0	0	0	0	0	0	0	0	0	0	0	0
16	90	3	6	12	29	40					130		80	50	27	14	6	2	1	1
17	35	98	98	74	49	39	34	20	20	16	10	7	6	3	4	3	2	2	1	1
18	160	_	14	28	68	93			350			280	187	117	63	33	14	5	1	1
19	_	220	14	4	3	2	2	1	0	0	0	0	0	0	0	0	0	0	0	0
	120	_	40	31	24	19	15	12	9	7	5	4	3	2	2	1	1	1	1	0
21	250	-	18	36	87								240		81	42	18	6	2	1
22	35	_	75		38	30		15	15	12	8	5	5	3	3	2	2	2	1	1
23	_	240		4	3	2	2	1	0	0	0	0	0	0	0	0	0	0	0	0
24	$\begin{vmatrix} 12 \\ 0 \end{vmatrix}$	280	22	11	11	4	4	4	4	4	4	2	2	2	1	1	1	1	0	0
25	60	360	23	7	5	2	2	1	0	0	0	0	0	0	0	0	0	0	0	0
26	10 5	102	102	77	51	41	36	20	20	16	11	7	7	4	4	3	2	2	1	1
27	180	8	16	32	77	107	240	267	400	373	347	320	213	133	72	37	16	5	1	1
28	60	270	22	11	11	4	4	4	4	4	4	2	2	2	1	1	1	1	0	0
29		440		8	6	3	3	1	0	0	0	0	0	0	0	0	0	0	0	0
30	-	260		10	10	3	3	3	3	3	3	2	2	2	1	1	1	1	0	0
31	210	4	8	16	39	53	120	133	200	187	173	160	107	67	36	19	8	3	1	1
32	70	86	86	65	43	34	30	17	17	14	9	6	6	3	3	3	2	2	1	1
33	60	260	17	5	4	2	2	1	0	0	0	0	0	0	0	0	0	0	0	0
34	_	290		12	12	4	4	4	4	4	4	2	2	2	1	1	1	1	0	0
					<u> </u>					l	<u> </u>					L			L	

	0																			
35	60	270	17	5	4	2	2	1	0	0	0	0	0	0	0	0	0	0	0	0
36	200	6	12	24	58	80	180	200	300	280	260	240	160	100	54	28	12	4	1	1
37	10 5	150	150	113	75	60	52	30	30	24	16	10	10	5	6	4	3	3	2	1
38	80	156	120	93	72	57	45	36	27	21	15	12	9	6	6	3	2	2	1	0
39	35	100	100	75	50	40	35	20	20	16	10	7	6	4	4	3	2	2	1	1
40	70	136	136	102	68	54	48	27	27	22	14	10	9	5	5	4	3	3	1	1
41	10 0	1	2	4	10	13	30	33	50	47	43	40	27	17	9	5	2	1	1	1
42	12 0	220	18	9	9	3	3	3	3	3	3	1	1	1	1	1	1	1	0	0
43	60	290	19	5	4	2	2	1	0	0	0	0	0	0	0	0	0	0	0	0
44	50	104	80	62	48	38	30	24	18	14	10	8	6	4	3	2	2	2	1	0
45	18 0	310	25	12	12	4	4	4	4	4	4	2	2	2	1	1	1	1	0	0
46	10 5	96	96	72	48	38	34	19	19	15	10	7	6	3	4	3	2	2	1	1
47	150	2	4	8	19	27	60	67	100	93	87	80	53	33	18	9	4	1	1	1
48	200	6	12	24	58	80	180	200	300	280	260	240	160	100	54	28	12	4	1	1
49	10 5	90	90	68	45	36	32	18	18	14	9	6	6	3	4	3	2	2	1	1
50	300	10	20	40	97	133	300	333	500	467	433	400	267	167	90	47	20	7	2	1